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Abstract

As a central solution concept of cooperative games, the notion of the core is widely

studied and applied in the matching theory literature. A matching outcome is said to

be in the core if no coalition of agents can find a profitable joint deviation. However,

it is well known that the core may be empty with general contracting networks, multi-

lateral contracts, or complementary preferences. Fortunately, recent studies including

Hatfield and Kominers (2015), Azevedo and Hatfield (2018), and Che, Kim, and Ko-

jima (2019) obtain nonempty core results under different assumptions despite those

difficulties. In this paper, we identify a convexity structure of matching games that

unifies our understanding of those nonempty core results and highlights their relation

to a lemma of Scarf (1967). This approach also allows us to obtain a new nonempty

core result after introducing peer preferences into the model of Che, Kim, and Kojima

(2019).
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1 Introduction

The solution concept of the core and its close relative, stability, have been widely studied
and applied in two-sided matching problems such as marriage and school choice. We say
that a matching outcome, or simply a matching, is blocked by a coalition of agents if those
agents can find a profitable joint deviation. In the context of the marriage problem (or
the school choice problem), a coalition consists of a woman and a man (or a school and a
student), who block the matching in question if they are not matched to each other but they
can be made strictly better off by doing so. A matching is the core if it is not blocked by
any coalition. If we are willing to assume that agents can perfectly coordinate to carry out
profitable joint deviations, we may reasonably expect matchings outside the core to be less
likely to occur than those in the core.

Like all other solution concepts, the notion of the core loses its predictive power if the
core is empty. Although Gale and Shapley (1962) show that the core is always nonempty in
the marriage problem, it may be empty in matching problems without a two-sided market
structure. To understand the empty core issue, let us consider the following roommate
problem adapted from Gale and Shapley (1962).

Example 1 (Three-individual roommate example). Consider three individuals, A, B, and
C. Any two of them can become roommates, in which case the third person will have to
live alone. All of them prefer having a roommate to living alone, but A likes living with
B better than C. Similarly, B prefers C to A, and C prefers A to B. Note that the matching
in which A and B live together and C lives alone is blocked by individuals B and C since
they will be strictly better off by becoming roommates. By symmetry, we also see that the
matching in which B and C live together is blocked by the coalition formed by C and A,
and the matching in which C and A live together is blocked by the coalition formed by A
and B. Therefore, the core is empty since we have examined all three possible matchings
and found that none of them is in the core.

It is also known that even the two-sided structure of a market does not always guar-
antee a nonempty core if matching is many-to-one. In matching problems such as labor
markets or school choice in which each agent on one side of the market (firms or schools)
is matched to multiple agents on the other side (workers or students), the core is guar-
anteed to be nonempty only under substitutable preferences (Kelso and Crawford (1982),
Roth (1984)). In other words, if some firm (or school) regards some workers (or students)
as complements, the core may again be empty. To illustrate, let us consider a labor market
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example taken from Che, Kim, and Kojima (2019), which has the similar nonempty core
issue to Example 1.

Example 2 (Two-by-two labor market example). Consider a labor market with two firms
and two workers. Firm I regards the two workers as complements and would rather hire
neither of them if it cannot hire both. Firm II wants to hire only one worker and prefers
worker 1 to worker 2. Worker 1 prefers working for firm I, and worker 2 prefers working
for firm II. Which matching is in the core in this example? First, firm I hiring both workers
is not in the core since it is blocked by firm II and worker 2. Second, firm I hiring no one
and firm II hiring worker 2 is not in the core either since it is blocked by firm II and worker
1. The last candidate is firm I hiring no one and firm II hiring worker 1, which is still
not in the core since it is blocked by the coalition formed by firm I, worker 1, and worker
2. Therefore, the core is empty since we have examined all three possible matchings and
found that none of them is in the core.

In the general equilibrium literature, it is known that the empty core issue tends to van-
ish when the market contains many consumers despite the difficulty of nonconvex prefer-
ences, which we know usually leads to en empty core in finite markets (Shapley and Shubik
(1966), Aumann(1966)). Generalizing the intuition behind this result, we may conjecture
that it is also easier to obtain a nonempty core in large matching markets. Fortunately,
this conjecture is indeed true for the roommate problem. Let us consider the following
the continuum variant of Example 1 and refer to it as the continuum roommate problem
hereafter.

Example 3 (Continuum roommate problem). Consider a continuum version of the afore-
mentioned roommate problem with three types of individuals instead of only three indi-
viduals. Each type of individuals is of mass 1 and has the same preferences as in the
three-individual roommate example (Example 1). In addition, each individual considers
matching with another individual of the same type to be unacceptable. This model can
be viewed as an infinite replica of the three-individual roommate problem. Note that the
matching in which all type A individuals are matched with type B individuals and all type C
individuals are unmatched is not in the core for the same reason as in Example 1, i.e., type
B and type C individuals can block this matching. A similar argument holds for the match-
ing in which all type B individuals are matched with type C individuals and the matching in
which all type C individuals are matched with type A individuals. However, what is differ-
ent in this continuum roommate problem is that there are many more possible matchings to
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consider than those three above. Particularly, let us consider the (1/2, 1/2, 1/2) combina-
tion of the three matchings above, i.e., the matching in which half of the type A individuals
are matched with half of the type B individuals, half of the type B individuals are matched
with half of the type C individuals, and half of the type C individuals are matched with
half of the type A individuals. In fact, this matching is in the core. To verify this, note
that a type A individual matched with a type B individual does not wish to participate in a
block since she already has her top choice. On the other hand, although a type A individual
matched with a type C individual does wish to form a block with some type B individual,
no type B individual has an incentive to join the block because any type B individual is
already matched with some other type A individual or some type C individual, who is an
even more preferred roommate. After ruling out all other blocks using similar arguments,
we conclude that this matching is indeed in the core.

In this example above, we essentially assume that each type of individuals is perfectly
divisible by letting it be a continuum. This divisible nature allows us to consider weighted
combinations of a few matchings, and it turns out that one such combination is in the core.1

Given this observation, it might be tempting to think that the core is always nonempty in a
market with a continuum of agents. However, this is not true. Let us provide a counterex-
ample, which we will refer to as the large coalition formation problem hereafter.

Example 4 (Large coalition formation). There are again three types of individuals, A,
B, and C, each of which is of mass 1. Individuals wish to form coalitions of positive
mass no greater than 2. When a type A individual is in a coalition (xA, xB, xC), where
xi ≥ 0 is the mass of type i individuals in the coalition, her utility is (100 + 2

√
xB + 1 +

√
xC + 1) ·

√
xA + 1 if xA + xB + xC ≤ 2 and is −1 if xA + xB + xC > 2. The utility

functions of the other two types of individuals are cyclic symmetric to type A’s. That is, if
xA+xB +xC ≤ 2, a type B individual’s utility is (100+ 2

√
xC + 1+

√
xA + 1) ·

√
xB + 1

and a type C individual’s utility is (100 + 2
√
xA + 1 +

√
xB + 1) ·

√
xC + 1; otherwise,

their utility is −1. Although the individuals’ preferences are convex due to their concave
utility functions, the core is in fact empty. To see this, by examining the marginal utility, we
first note that it is always beneficial for all individuals of the same type to join one coalition

1To guarantee a nonempty core in roommate problems, it is in fact sufficient to have an even number
of individuals of each type, which is shown by Tan (1991) and Aharoni and Fleiner (2003). An analogous
result for roommate problems with transfers is shown by Chiappori, Galichon, and Salanié (2014). Going
beyond roommate problems, we need a continuum of agents of each type because the weights that give us
the matching in the core are not necessarily half integrals, i.e., k/2 for some integer k.
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at any cost. Then, this continuum market is essentially equivalent to the three-individual
roommate example (Example 1), which we know has an empty core.

From this example above, we understand that a continuum market is not sufficient for
the applicability of our approach to a nonempty core. Although weighted combinations of
matchings could be defined, we cannot find a matching in the core. On the other hand,
our next example shows that a market with a continuum of agents is also not necessary for
the applicability of our approach. We will refer to it as the time-share roommate problem
hereafter.

Example 5 (Time-share roommate problem). Let us reconsider Example 1, but now we
allow for time-share matching, i.e., two individuals can spend some fraction of their time
together. Consider the matching in which individual A spends half of her time with individ-
ual B, individual B spends half of her time with individual C, and individual C spends half
of her time with individual A, and this matching is in fact in the core. To verify this, it is
sufficient to note that although A wishes to spend more time with B, B would not be willing
to do so at the cost of decreasing her time spent with C, who is her more preferred room-
mate. Similar to Example 3, this matching in the core can be viewed as a (1/2, 1/2, 1/2)

combination of the three matchings we considered in Example 1, which are not in the core.

Note that in the example above, each pair of individuals chooses their time spent to-
gether from the interval [0, 1]. This continuous structure allows us to consider weighted
combinations of a few matchings and it turns out that one such combination is in the core,
just as in the continuum roommate problem (Example 3). However, note that the inter-
pretation of “combinations” here is different. In Example 3, a combination is taken over
population size, while in Example 5, the combination is taken over time spent together by
each pair of individuals.2

Given the similarity between Example 3 and 5, we may wonder whether we have a
unified understanding of this approach that obtains a matching in the core by combining a
few matchings not necessarily in the core. Before we turn to that, let us consider one more
example from Che, Kim, and Kojima (2019), which we will refer to as the large-firm labor
market problem hereafter.

2It might be tempting to reinterpret the matching we found in the core as a random matching among three
individuals, in which each pair is matched with probability 1/2. However, this interpretation is not valid
because individuals A and B being matched with probability 1/2 implies that individual C is unmatched
with probability at least 1/2. However, this probability-share interpretation is valid in two-sided matching
markets thanks to the Birkhoff-von Neumann theorem (see, for example, Hylland and Zeckhauser (1979),
Bogomolnaia and Moulin (2001), Budish, Che, Kojima, and Milgrom (2013)).
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Example 6 (Large-firm labor market). Consider a variant of Example 2. There are still
two firms, but there are two types of workers, each of which is of mass 1. This captures
the asymmetry of the two sides of the market, i.e., the firms are large and matched with
many workers. Firm I regards the two types of workers as complements. From employing
type 1 workers of mass x1 ≥ 0 and type 2 workers of mass x2 ≥ 0, firm I derives utility
min{x1, x2}. Firm II wants to hire more workers up to mass of 1 and prefers type 1 workers.
Type 1 workers prefer working for firm I, and type 2 workers prefer working for firm II.
We can verify that the following three matchings are not in the core just as in Example 2.
First, firm I hiring all type 1 and type 2 workers is not in the core since it is blocked by
firm II and type 2 workers. Second, firm I hiring no workers and firm II hiring all type 2
workers is not in the core since it is blocked by firm II and type 1 workers. Third, firm I
hiring no workers and firm II hiring all type 1 workers is not in the core since it is blocked
by the coalition formed by firm I, type 1 workers, and type 2 workers. However, note that
the (1/2, 1/2, 1/2) combination of the three matchings above, i.e., the matching in which
both firms hire half of the type 1 workers and half of the type 2 workers, is in fact in the
core. To verify this, note that although those type 1 workers working for firm II wish to go
to firm I, firm I would not benefit from that unless some more type 2 workers also go to
firm I. However, type 2 workers have no incentive to do so. On the other hand, although
those type 2 workers working for firm I wish to go to firm II, Firm II has no incentive to
accept them at the cost of dismissing some type 1 workers.

In this paper, we provide a unified explanation of the three nonempty core examples
discussed above: the continuum roommate problem (Example 3), the time-share roommate
problem (Example 5), and the large-firm labor market problem (Example 6). In those
three examples, we observe a striking similarity: a matching in the core can be obtained by
combining a few matchings not necessarily in the core. We introduce a unifying framework,
the convex matching game, which subsumes a large class of matching problems. We call
a matching problem a convex matching game if it satisfies two conditions: (1) The set of
all matchings is a convex set; (2) a convex combination of matchings preserves the welfare
properties of its components. In all convex matching games, we show that a matching
in the core can always be obtained by taking convex combinations; therefore, the core is
nonempty. However, note that our concept of convexity is not in its usual sense because the
weights a combination assigns to its components do not necessarily sum to 1 as in the three
examples. We will see that the weights instead need to satisfy a more subtle constraint.

Scarf’s lemma is central to our result, which distinguishes our approach from the fixed-
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point approach to stable matchings prevalent in the matching theory literature (see Adachi
(2000), Fleiner (2003), Echenique and Oviedo (2004, 2006), Hatfield and Milgrom (2005),
Ostrovsky (2008), Hatfield and Kominers (2017), Azevedo and Hatfield (2018), and Che,
Kim, and Kojima (2019), among others). The lemma first appeared in the seminal paper
by Scarf (1967), where it is used to show that a balanced nontransferable utility (NTU)
game always has a nonempty core. Later, Aharoni and Fleiner (2003), in their combi-
natorial mathematics paper, use Scarf’s lemma to show the existence of a fractional stable
matching in hypergraphic preference systems and highlight the relation of Scarf’s lemma to
stable matching problems in the sense of Gale and Shapley (1962), although they provide
no specific economic interpretation of fractional stable matchings. More recently, Biró,
Fleiner, and Irving (2016) apply Scarf’s lemma to the hospital / resident matching prob-
lem with couples and show the existence of a fractional stable matching, and Nguyen and
Vohra (2018) show that a rounding algorithm can be applied to a fractional stable matching
to obtain an integral stable matching of a nearby problem with adjusted hospital capacities.

We show that the Scarf’s lemma approach can be applied to a large class of matching
problems beyond labor market matching with couples, since the concept of convex match-
ing games we introduce allows for general matching networks, multilateral contracts, and
complementary or nonconvex preferences. Specifically, we provide three applications:

1. The first application is a full-fledged generalization of the continuum roommate
problem (Example 3), which considers a market with a continuum of agents that form so-
cial or economic relationships, such as roommateship, marriage, employment, or school
enrollment. We follow the tradition of Hatfield and Milgrom (2005) and call these rela-
tionships “contracts”. The contracts are allowed to be multilateral (involving more than
two agents), but each contract is small in the sense that the set of agents involved in each
contract is of zero mass. Each agent has arbitrary preferences over sets of contracts that
involve her. We show that this problem satisfies the notion of convex matching games and
therefore has a nonempty core. This result can be viewed as an alternative approach to the
nonempty core result of Kaneko and Wooders (1986) and Azevedo and Hatfield (2018).

2. The second application is a full-fledged generalization of the time-share roommate
problem (Example 5), which considers a market with finitely many agents who coordinate
through contracts. Each contract is specified by a set of terms (e.g., price, quantity, time,
location) that describe what each agent involved in this contract is supposed to do. It is
assumed that the contract terms are taken from a convex set and the agents have convex
preferences over contract terms. We show that this problem satisfies the notion of convex
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matching games and thus has a nonempty core. This result extends the nonempty core
result of Hatfield and Kominers (2015) to markets that may not have quasi-linear transfers.

3. The third application is a full-fledged generalization of the large-firm labor market
problem (Example 6), which considers a market in which finitely many firms are matched to
a continuum of workers of finitely many types and workers may have preferences over their
colleagues. We show that this model satisfies the notion of convex matching games and thus
has a nonempty core, if all firms and workers have convex preferences and each worker
dislikes other workers of the same type possibly due to competition. This setting can be
viewed as a generalization of Che, Kim, and Kojima (2019) to allow for peer preferences.

In one-to-one matching problems such as the marriage or roommate problem, it is
known that the solution concept of the core is equivalent to stability. In more general match-
ing markets, however, the two solution concepts are not related in a straightforward way.
Blair (1988), for example, provides an example of a many-to-many matching problem with
a unique stable matching and a different unique matching in the core. As a consequence,
the nonempty core results in the first and third applications do not directly imply the ex-
istence of stable matchings in Azevedo and Hatfield (2018) and Che, Kim, and Kojima
(2019). However, we go one step further to show that in labor markets with a continuum of
workers without peer preferences, either in the small-firm setting of Azevedo and Hatfield
(2018) or in the large-firm setting of Che, Kim, and Kojima (2019), the notion of convex
matching games can be applied to establish the existence of stable matchings despite the
difficulty of complementary preferences. In this sense, the framework of convex match-
ing games unifies our understanding of the two similar but distinct results on two-sided
large-market matchings with complementarities.

The remainder of this paper is organized as follows. Section 2 discusses the relation
of this paper to the literature. Section 3 introduces the framework of convex matching
games. Section 4 studies the three applications, and in particular, the third application
provides a new nonempty core result for many-to-one matching problems with peer pref-
erences. Section 5 provides a unified understanding of the stability results in Azevedo and
Hatfield (2018) and Che, Kim, and Kojima (2019) in the special case of labor markets with
a continuum of workers of finitely many types. Section 6 concludes the paper.
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2 Literature

As discussed in the Introduction, a lemma of Scarf (1967) plays a central role in our
nonempty core result. We show that the Scarf’s lemma approach can be applied to a large
class of problems beyond matching with couples studied by Biró, Fleiner, and Irving (2016)
and Nguyen and Vohra (2018). This section provides a brief literature review for the three
applications in this paper.

The first application can be viewed as an alternative approach to the nonempty core
result of Azevedo and Hatfield (2018) and Kaneko and Wooders (1986) with some tech-
nical extensions. Kaneko and Wooders (1986) show that the core is nonempty in general
nontransferable utility (NTU) games with a continuum of agents of finitely many types.
A limitation of this result is that they consider a weakened notion of the core that only
rules out blocking by coalitions of finitely many agents. By contrast, Azevedo and Hatfield
(2018) consider the standard notion of the core while making the assumption that each
contract only contains finitely many agents. In this application, we extend the result of
Azevedo and Hatfield (2018) to allow for contract terms to vary continuously. Although the
nonempty core result does not imply stability in general, in Section 5.1 the Scarf’s lemma
approach will be applied to obtain the stability result of Azevedo and Hatfield (2018) in the
special case many-to-one matching with complementarities.

The second application generalizes the nonempty core result of Hatfield and Kominers
(2015) to markets that may not have quasi-linear transfers. Hatfield and Kominer (2015)
show that the competitive equilibrium always exists in a multilateral matching setting with
convex preferences. Because a competitive equilibrium must be in the core, the nonempty
core result is obtained as their corollary. In their model, participants in a venture can jointly
determine their level of participation and the monetary transfer to each participant in the
venture. We extend this setting to allow participants in a venture to determine all parameters
that describe what each of them is supposed to do in the venture, including price, quantity,
time, location, etc. In this multilateral matching setting, note that the notions of the core
and stability are not related in a straightforward way, and therefore a caveat is that our
nonempty core result does not imply the (strong group) stability result of Hatfield and
Kominers (2015).

The third application extends the large-firm labor market setting of Che, Kim, and
Kojima (2019) to allow for peer preferences. Dutta and Massó (1997) study matching
problems with peer preferences and find that the core tends to be empty unless workers have
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lexicographic preferences, taking the firm they work for as their primary consideration and
the colleagues they work with as their secondary consideration. This assumption essentially
requires that peer preferences are negligible. By contrast, the Scarf’s lemma approach
allows us to consider peer preferences that are significant because our nonempty core result
only relies on convexity of preferences and the assumption that each worker dislikes other
workers of the same type. In addition, peer preferences also relate the matching problem to
the coalition formation literature (e.g., Banerjee, Konishi, and Sönmez (2001), Cechlárová
and Romero-Medina (2001), Bogomolnaia and Jackson (2002), Pápai (2004), and Pycia
(2012)), where nonempty core results are typically obtained under relatively restrictive
assumptions on agents’ preferences or on the contracting network structure.

The framework of convex matching games also unifies our understanding of the stabil-
ity results of Azevedo and Hatfield (2018) and Che, Kim, and Kojima (2019) in the special
case of labor markets with finitely many types of workers. These two papers both study
two-sided large matching markets and obtain stability results despite the difficulty of com-
plementary preferences. However, their contributions to the literature are independent since
their results are obtained in different model settings. Azevedo and Hatfield (2018) consider
a model with a continuum of agents on both sides of the market and where each agent is
matched to finitely many agents on the other side.3 By contrast, Che, Kim, and Kojima
(2019) consider a model with finitely many firms, each of which is matched to a contin-
uum of workers.4 As a consequence, the stability results in the two papers correspond to
different asymptotic stability properties of large finite markets: The model of Azevedo and
Hatfield (2018) can be interpreted as the limit of a sequence of markets in which number
of firms and the number of workers go to infinity at the same speed while the size of each
firm remains unchanged; the model of Che, Kim, and Kojima (2019) can be interpreted as
the limit of a sequence of markets in which the number of firms remains unchanged while
the number of workers and the size of each firm go to infinity at the same speed.

3 Model

This section introduces the concept of convex matching games and shows that a convex
matching game always has a nonempty core.

3Studies that consider the “small-firm” setting as in Azevedo and Hatfield (2018) include Echenique, Lee,
Shum, and Yenmez (2013) and Menzel (2015), among others.

4Studies that consider the “large-firm” setting as in Che, Kim, and Kojima (2019) include Abdulkadiroğlu,
Che, and Yasuda (2015) and Azevedo and Leshno (2016), among others.
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A matching game consists of {I,M, φ, (Di)i∈I ,A}. The finite set I is the set of players

andM is the set of matching outcomes, or matchings for short. In applications, a player
may represent either a single agent or a continuum of identical agents. The function φ :

M → [0, 1]I is called the participation function. For each matching µ, the value φi(µ) ∈
[0, 1] measures the participation of player i in matching µ. When player i represents a single
agent, φi(µ) is either 0 or 1, indicating whether agent i participates in matching µ. When
player i represents a continuum of identical agents, φi(µ) is the fraction of type i agents
participating in matching µ. For each player i ∈ I , let Mi := {µ ∈ M : φi(µ) > 0}
be the set of matchings in which player i has a positive participation level. The binary
relation Di onMi is the preference relation of player i, which is assumed to be complete
and transitive. When player i represents a continuum of identical agents, the preference
relation Di is typically interpreted as aggregate preferences, determined by the welfare
of the worst-off type i agents. In other words, µ′ Di µ means that the worst-off type i
agents under matching µ′ are better off than the worst-off type i agents under matching µ.5

Let Bi be the strict version of Di and ≡i be indifference. The binary relation A onM is
interpreted as the blocking relation. When µ′ A µ, we say that matching µ′ blocks matching
µ. A matching µ is nontrivial if φ(µ0) 6= 0, which means that µ is not the matching under
which all agents are unmatched.

The core of the matching game is the set of matchings that are not blocked by any
nontrivial matching. The formal definition is below.

Definition 1. The core of a matching game {I,M, φ, (Di)i∈I ,A} is the set

C :=
⋂

µ∈M+

NB(µ)

whereM+ is the set of all nontrivial matchings and NB(µ) := {µ′ ∈ M : µ 6A µ′} is the
set of matchings not blocked by µ.

To better understand the concept of matching games introduced above, let us consider
how it relates to the three examples in the introduction. First, in the continuum roommate
problem (Example 3), there are three players, each representing a continuum of individuals
of the same type, i.e., we have I = {A,B,C}. Let µ1 be the matching in which all type A
individuals are matched with type B individuals and all type C individuals are unmatched,

5When dealing with stability instead of the core, the interpretation of the relation Di will be modified
accordingly. See Section 5for details.
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µ2 be the matching in which all type B individuals are matched with type C individuals
and all type A individuals are unmatched, and µ3 be the matching in which all type C
individuals are matched with type A individuals and all type B individuals are unmatched.
Furthermore, let µ∗ be the matching in which half of the type A individuals are matched
with half of the type B individuals, half of the type B individuals are matched with half
of the type C individuals, and half of the type C individuals are matched with half of
the type A individuals. The set M contains the set of all matchings, including but not
restricted to µ1, µ2, µ3, and µ∗. The participation vectors of these particular matchings are
φ(µ1) = (1, 1, 0), φ(µ2) = (0, 1, 1), φ(µ3) = (1, 0, 1), and φ(µ∗) = (1, 1, 1). Note that the
worst-off type A individuals in µ1 are matched to a type B individual, while the worst-off
type A individuals in µ∗ are matched to a type C individual. Therefore, we have µ1 BA µ

∗.
Moreover, we have µ3 ≡A µ∗ since the worst-off type A individuals are matched to a type
B individual in both matchings. Note that µ2 /∈MA and so it is not comparable under DA.
The relations DB and DC are obtained in a similar way. As in the Introduction, we have
µ2 A µ1, µ3 A µ2, and µ1 A µ3, and the matching µ∗ is not blocked by any nontrivial
matching.

Second, in the time-share roommate problem (Example 5), there are three players, indi-
viduals A, B, and C, i.e., we have I = {A,B,C}. Let µ1 be the matching in which individ-
uals A and B are always matched while individual C is unmatched. Let µ2 be the matching
in which individuals B and C are always matched while individual A is unmatched. Let µ3

be the matching in which individuals C and A are always matched while individual B is un-
matched. Let µ∗ be the matching in which each pair of individuals are matched together half
of the time. The participation vectors of these particular matchings are φ(µ1) = (1, 1, 0),
φ(µ2) = (0, 1, 1), φ(µ3) = (1, 0, 1), and φ(µ∗) = (1, 1, 1). By the preferences of individual
A, we have µ1 BA µ

∗ BA µ
3. Note that µ2 /∈ MA and so it is not comparable under DA.

The relations DB and DC are obtained in a similar way. As in the Introduction, we have
µ2 A µ1, µ3 A µ2, and µ1 A µ3, and the matching µ∗ is not blocked by any nontrivial
matching.

Finally, in the large-firm labor market problem (Example 6), there are four players: firm
I, firm II, type 1 workers, and type 2 workers, i.e., I = {I, II, 1, 2}. Note that I and II
each represent a single firm, while 1 and 2 each represent a continuum of identical workers.
Let µ1 be the matching in which firm I hires all workers. Let µ2 be the matching in which
firm I hires no workers and firm II hires all type 2 workers. Let µ3 be the matching in
which firm I hires no workers and firm II hires all type 1 workers. Let µ∗ be the matching
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in which both firms hire half of the workers of each type. The participation vectors of these
particular matchings are φ(µ1) = (1, 0, 1, 1), φ(µ2) = (0, 1, 0, 1), φ(µ3) = (0, 1, 1, 0), and
φ(µ∗) = (1, 1, 1, 1). By the preferences of the firms, we have µ1 BI µ

∗ and µ3 BII µ
∗ BII

µ2. By considering the worst-off workers within a type, we have µ1 B1 µ3 ≡1 µ∗ and
µ2 B2 µ

1 ≡1 µ
∗. As in the Introduction, we have µ2 A µ1, µ3 A µ2, and µ1 A µ3, and the

matching µ∗ is not blocked by any nontrivial matching.
In all three examples above, the matching µ∗ in the core can be considered a (1/2, 1/2, 1/2)

combination of µ1, µ2, and µ3 as we have saw the Introduction. Now let us formally intro-
duce the notion of combinations of matchings. Let µ1, µ2, . . ., and µn be a set of matchings
in M and w = (w1, w2, . . . , wn) be a vector of nonnegative real numbers. We assume
that the set M of all matchings is endowed with some algebraic structure s.t. the linear
combination

∑n
j=1w

jµj also represents a matching inM as long as
∑n

j=1 w
jφ(µj) ≤ 1,

where 1 ∈ RI is the vector of 1’s. This structure is natural in the three examples. In
the continuum roommate problem (Example 3), a linear combination of matchings scales
the mass of individuals matched under µj by wj and then pools all the scaled matchings
together. In the time-share roommate problem (Example 5), a linear combination of match-
ings specifies the time each pair of individuals spend together as the corresponding linear
combination of the time they spent together in each µj . In the large-firm labor market
problem (Example 6), a linear combination of matchings specifies the type distribution of
each firm’s employees as the corresponding linear combination of type distributions in each
µj . The restriction

∑n
j=1w

jφ(µj) ≤ 1 is required because in the first and third examples,
the fraction of matched individuals or hired workers of each type cannot be greater than
1, and in the second example, each individual has 1 unit of available time. Let us call the
linear combination

∑n
j=1w

jµj a φ-convex combination if the weights satisfy the restriction∑n
j=1 w

jφ(µj) ≤ 1. Note that this is not the standard notion of convex combinations since
the weights (wj) do not necessarily sum to 1. Instead, the restriction is determined by the
participation function φ.

The φ-convex structure of the set of matchings by itself is not sufficient for a nonempty
core. It is also important to assume that a φ-convex combination of matchings preserves the
welfare properties of its components in some way. Specifically, we assume that a φ-convex
combination is not blocked by a matching µ if there exists a player i whose participation is
necessary to form block µ but has no incentive to so because player i has full participation in
more preferred matchings under the φ-convex combination. More formally, we impose the
following restriction on the blocking relation A: If µ is a matching, µ∗ =

∑n
j=1 w

jµj is a φ-
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convex combination and there exists a player i with φi(µ) > 0 s.t.
∑n

j=1 w
jφi(µ

j) = 1, and
µj Di µ for all j with wj > 0 and φi(µj) > 0, then we must have µ 6A µ∗. This restriction
is natural in the three examples we have discussed. First, in the continuum roommate
problem,

∑n
j=1w

jφi(µ
j) = 1 implies that all type i individuals are matched under µ∗.

Furthermore, recall that the aggregate preference relation Di is determined by the worst-off
type i individuals under two matchings, the condition µj Di µ for all j with wj > 0 and
φi(µ

j) > 0 implies that the worst-off type i individual under µ∗ is weakly better-off than
the worst-off type i individual under µ. Therefore, there is no type i individual willing to
accept the least preferred roommate under the block µ, and so µ does not block µ∗. Second,
in the time-share roommate problem,

∑n
j=1 w

jφi(µ
j) = 1 implies that

∑
j:φi(µj)>0w

j =

1. Therefore, the time individual i spends with another individual under µ∗ is a convex
combination (in its standard meaning) of that under each µj . Moreover, the condition
µj Di µ for all j with wj > 0 and φi(µj) > 0 implies that individual i weakly prefers
each relevant component of µ∗ to µ. As long as individual i has convex preferences over
time spent with others, she will weakly prefer µ∗ to µ, and so µ does not block µ∗. Third,
in the large-firm labor market problem, when player i represents a type of workers, the
same argument carries over as in the first example, and when player i represents a firm, the
same argument carries over as in the second example, with the time spent with others being
replaced by the type distribution of employees.

Let us summarize the restrictions we impose on a matching game discussed above by
defining the notion of convex matching games.

Definition 2. A matching game {I,M, φ, (Di)i∈I ,A} is convex if (i) the setM of match-
ings is closed under φ-convex combinations and (ii) we have µ 6A µ∗ if µ∗ =

∑n
j=1 w

jµj is a
φ-convex combination of {µj}nj=1 and ∃ player i ∈ I with φi(µ) > 0 s.t.

∑n
j=1 w

jφi(µ
j) =

1 and µj Di µ for all j with wj > 0 and φi(µj) > 0.6

In addition to the convexity restriction, we also need the following technical restriction.

Definition 3. A matching game {I,M, φ, (Di)i∈I ,A} is regular if (i) the setM of match-
ings is compact and (ii) for each nontrivial matching µ, the set NB(µ) of matchings that
are not blocked by µ is closed.7

6Convexity of matching games implicitly requires thatM lies in a vector space so that linear combinations
are meaningful.

7Regularity of matching games implicitly requires thatM lies in a topological space so that compactness
and closedness are meaningful
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Here is the main result of this paper.

Theorem 1. The core is nonempty in a regular and convex matching game.

Central to this result is a lemma by Scarf (1967). The following version of the lemma
can be found in, for example, Király and Pap (2009). Consider a matrix A = (aij) of
nonnegative real numbers with rows indexed by i in a finite set I and columns indexed by
j ∈ {1, 2, . . . , n}. Assume that in each column j, at least one entry is positive. Each row
i is associated with a complete and transitive binary relation Di on the set {j : aij > 0}
of columns.8 We say that a vector w in the polyhedron {w ∈ Rn

+ : Aw ≤ 1} dominates

column k ∈ {1, 2, . . . , n}, if there exists a row i s.t. aij > 0,
∑n

j=1w
jaij = 1, and j Di k

for all j with wj > 0 and aij > 0.

Lemma 1 (Scarf, 1967). There exists a vector w∗ in the polyhedron {w ∈ Rn
+ : Aw ≤ 1}

that dominates all columns of the matrix A.

Proof of Theorem 1. Consider a regular and convex matching game {I,M, φ, (Di)i∈I ,A}.
To show that the core

C =
⋂

µ∈M+

NB(µ)

is nonempty, it is sufficient to show that every finite collection of these NB(µ)’s has a
nonempty intersection. To see the sufficiency here, suppose that C =

⋂
µ∈M+

NB(µ) is
empty. Then, the complements of the NB(µ)s consist of an open cover of M because
each NB(µ) is closed. By the compactness of M, there exists a finite subcover, which
corresponds to finitely many NB(µ)s with empty intersection.

Take any finite collection of nontrivial matchings: µ1, µ2, . . . , µn ∈ M+. We want to
show that the intersection

⋂n
k=1 NB(µk) is nonempty. Let us construct the |I| × n matrix

A with its j-th column being φ(µj), i.e., we let aij = φi(µ
j). Note that each column j

of A contains at least one positive entry because µj is nontrivial. Moreover, because the
aggregate preference relation Di of player i is defined on all matching µ’s with φi(µ) > 0,
it is well defined on all column js with aij > 0. Therefore we can invoke Scarf’s lemma
to obtain a weight vector w∗ that dominates all columns. By part (i) of Definition 2, the

8Király and Pap (2009) and Nguyen and Vohra (2018) require the relation Di to be a linear order, which
rules out indifference. However, it is not difficult to accommodate indifference. If Di does not satisfy
antisymmetry, we may break ties arbitrarily to obtain a linear order D′i. By applying Scarf’s lemma to D′i, we
obtain a dominating vector with respect to D′i and note that a dominating vector with respect to D′i is also a
dominating vector with respect to the original relation Di.
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φ-convex combination µ∗ =
∑n

j=1w
∗jµj is a matching in M. Moreover, because w∗

dominates each column k, by part (ii) of Definition 2, the matching µ∗ is not blocked by
µk. This shows that µ∗ ∈

⋂n
k=1 NB(µk), and therefore the proof is completed.

4 Applications

This section discusses three applications of the concept of convex matching games, gener-
alizing each of the three nonempty core examples in the Introduction.

4.1 Continuum Economy with Small Contracts

In this subsection, we consider a continuum economy model in which each contract only
involves a set of agents of zero mass and show that it satisfies our notion of convex matching
games and therefore has a nonempty core. This model subsumes the continuum roommate
problem (Example 3) as a special case and can be viewed as a technical extension of the
nonempty core result of Azevedo and Hatfield (2018) to a setting where a contract may
involve a continuum of agents and a continuum of contract terms. An important feature
of this model is that it allows for general matching networks, multilateral contracts, and
complementary or nonconvex preferences, which we know usually lead to the empty core
issue in finite markets.

Consider finitely many types of agents, denoted by i ∈ I . The mass of type i agents is
mi > 0. Agents play roles in social or economic relationships with other agents. We let
Ri be the set of roles for type i agents and assume that each Ri is a compact metric space.
Each social or economic relationship is a combination of roles. We follow the tradition
of Hatfield and Milgrom (2005) and call social or economic relationships contracts. We
represent a type of contracts as x = {xi}i∈I , where xi is a Borel measure on Ri that
specifies the quantity of each role for type i agents involved in the contract. Let X be the
set of all types of contracts, and we assume that X is compact.9 In addition, we exclude
from X the “empty” contract, i.e., the contract x with each xi being the zero measure on
Ri.

Each agent may participate in multiple contracts at the same time, playing one role in
each contract. For a type i agent, a bundle of roles is a Borel measure βi on Ri that only

9In this paper, the topology we adopt is the weak-* topology whenever we consider a set of measures. In
the context of the space X , the weak-* topology is the weakest topology that makes

∫
Ri
fdxi a continuous

function in x for each i and continuous f on Ri.
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takes integer values, and it specifies the quantity of each role contained in the bundle. We
assume that for some finite integer N , each agent cannot take more than N roles at a time,
i.e., the bundle βi is bounded by N . Let B̄i be the set of all such bundles. For each agent
type i, agents of type i share the same preference relation %i on B̄i, which is assumed to be
complete and transitive. Moreover, we assume that the preference relation %i is continuous
in the sense that all upper or lower contour sets are closed in B̄i. Let 0i ∈ B̄i be the
zero measure on Ri, which represents the empty bundle. When a type i agent holds the
empty bundle, we also say that the agent is unmatched; otherwise, we say that the agent is
matched. Let Bi := {βi ∈ B̄i\{0i} : βi %i 0i} be the set of nonempty and individually
rational bundles for type i agents.

A matching outcome, or simply a matching, is described by a Borel measure µx on
X that specifies the quantity of contracts of each type x and a Borel measure µi on Bi

that specifies the quantity of type i agents holding each nonempty and individually rational
bundle βi. Clearly, we have µi(Bi) ≤ mi since the mass of type i agents is mi, and the
difference mi − µi(Bi) is the mass of unmatched type i agents. In a matching, we require
that the following accounting identity must hold for each agent type i:∫

Bi

βidµi =

∫
X

xidµx. (1)

Note that both sides of the identity measure the quantity of each role for type i agents
present in the matching µ. The left-hand side calculates the quantity from the perspective of
bundles, and the right-hand side calculates the quantity from the perspective of contracts.10

Now, we formally define a matching as µ = (µx, (µi)i∈I) subject to the accounting identity
(1).

Note that we do not assume that each contract only contains finitely many roles. In
general, a contract may contain a continuum of roles played by a continuum of agents, as
long as the continuum of agents is of zero mass. In that case, our model can be viewed as
the limit of a large economy model in which the number of agents involved in each contract
grows sublinearly with respect to the number of agents in the whole economy.

10Intuitively, both sides of the identity are aggregations of a continuum of Borel measures on Ri, which
results in a Borel measure on Ri. Formally, it is easier to define the Borel measures on both sides of the
identity indirectly through the linear functional to which they correspond. This can be done since each linear
functional L on the set of continuous functions on Ri s.t. L(f) ≥ 0 if f ≥ 0 corresponds to a unique Borel
measure on Ri. We can define the left-hand side of the identity as the Borel measure that corresponds to the
linear functional L(f) :=

∫
Bi

∫
Ri
fdβidµi and the right-hand side as the Borel measure that corresponds to

the linear functional L′(f) :=
∫
X

∫
Ri
fdxidµx.
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The trivial matching is the one with µx being the zero measure on X and µi being the
zero measure on Bi, i.e., the matching in which all agents are unmatched. For a matching
µ with µi(Bi) > 0, we let β

i
(µ) be the least preferred nonempty bundle held by type i

agents under matching µ.11 We say that a matching µ is blocked by a nontrivial matching
µ̂ if for any agent type i involved in block µ̂, we are able to find some type i agents willing
to participate in the block. The formal definition is as below.

Definition 4. A matching µ is blocked by a nontrivial matching µ̂ if for each i ∈ I with
µ̂i(Bi) > 0, we have

mi − µi(Bi) + µi({βi ∈ Bi : βi ≺i βi(µ̂)}) > 0.

The core of this continuum economy is the set of matchings that are not blocked by any
nontrivial matching.

In the inequality in definition, mi − µi(Bi) is the mass of type i agents who are un-
matched and µi({βi ∈ Bi : βi ≺i βi(µ̂)}) is the mass of type i agents who are matched,
but the bundle they hold is less preferred than the least preferred bundle β

i
(µ̂) under µ̂.

Therefore the left-hand side of the inequality measures the total mass of type i agents will-
ing to accept β

i
(µ̂). The inequality requires this mass to be positive since we need to find

some type i agents willing to accept β
i
(µ̂) to form such a block µ̂. Additionally, we may

also require that for each bundle βi in the support of µ̂i, the mass of type i agents willing to
accept βi is no less than the mass of type i agents holding some bundle weakly worse than
βi under µ̂. However, this additional requirement will not make a difference to the notion
of the core because as long as the mass of type i agents willing to accept β

i
(µ̂) is positive,

we can find α > 0 small enough s.t. the mass of type i agents willing to accept β
i
(µ̂) is

greater than αµ̂i(Bi), which implies that there are sufficiently many type i agents willing
to accept any bundle under the block αµ̂.

Note that the model implicitly assumes “small contracts” in the sense that agents are
coordinated through a continuum of contracts, each of which only involves a set of agents
of zero mass. This rules out the large coalition formation problem (Example 4). Under
this assumption, each matching µ is perfectly divisible, and more importantly, the support

11Formally, we define β
i
(µ) as the least preferred bundle by type i agents in the support of µi. Note that

the least preferred bundle exists because the support of µi is by definition closed, Bi is compact (see Proof
of Proposition 1 in Appendix A), and the preference relation %i is continuous. If there is more than one least
preferred bundle due to indifference, we arbitrarily let one of them be β

i
(µ).
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of αµi is the same as that of µi, so they have the same welfare implications for matched
agents. This property is crucial to the convexity structure of the matching game induced by
the continuum economy model.

To apply our main theorem (Theorem 1), let us consider the following matching game
{I,M, φ, (Di)i∈I ,A} induced by the continuum economy. Let the set I of players be
the set of agent types and the set M be the set of matchings. For each matching µ =

{µx, {µi}i∈I}, let the participation value φi(µ) of type i agents be the fraction of them being
matched under µ, i.e., φi(µ) = µi(Bi)/mi. For each agent type i, define the aggregate
preference Di onMi, the set of matchings with µi(Bi) > 0, as µ′ Di µ if β

i
(µ′) %i βi(µ).

The relation A follows the blocking relation in Definition 4, i.e., we let µ̂ A µ if µ̂ is
nontrivial and µ̂ blocks µ.

Proposition 1 (Kaneko and Wooders (1986), Azevedo and Hatfield (2018)). With continu-

ous preferences and small contracts, the matching game induced by the continuum economy

model is regular and convex. Therefore, the core of the continuum economy is nonempty by

Theorem 1.

Proof. See Appendix A.

As we have mentioned, this nonempty core result is obtained in a general setting that
allows for general matching networks, multilateral contracts, and complementary or non-
convex preferences. To better understand the generality of the setting, let us for example
consider a labor market matching problem with couples and peer preferences. There is
a continuum of firms categorized into finitely many types, which is defined by the firms’
preferences, size, industry, market share, financial structure, etc. There is also a continuum
of families, each of which has a male worker and a female worker. Families are also cate-
gorized into finitely many types defined by the two workers’ preferences, skill type, ability,
experience, etc. Each firm takes into account the characteristics of all its employees, and
its preferences may exhibit complementarities over different skill types. The two workers
in each family make their joint decision, taking into account not only the characteristics
of the firms they work for but also the characteristics of their colleagues and the distance
between the firms they work for. Of course, both firms and workers also care about other
characteristics of the employment relationship, including wage, working conditions, etc. In
our model, let us regard the employment relationship between a firm and all its employees’
families as one contract. Each contract type x specifies the type of firm and the number
of each type of employees’ families that supply to the contract a male worker, a female
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worker, or both under each wage level and each set of working conditions. The role the
firm plays in a type x contract is simply “the employer of a type x contract”. The role
played by a family in a type x contract is specified by the type of the family, whether the
family is a supplier of a male worker, a female worker, or both, and the wage and working
conditions provided to the family.12 Each firm may play at most one role at a time, and a
family may play at most two roles, a male worker supplier in one contract and a female
worker supplier in another, in which case the two workers in the family work for different
firms.

4.2 Finite Economy with Convex Set of Contract Terms

In this subsection, we consider a finite economy model in which each contract is speci-
fied by a term chosen from a convex set. This model subsumes the time-share roommate
problem as a special case and is a generalization of a nonempty core result of Hatfield
and Kominers (2015) to markets that may not have quasi-linear transfers. We show that if
all agents have convex preferences over contract terms, the model satisfies our notion of
convex matching games and therefore has a nonempty core.

There is a finite set I of agents and a finite set Ω of ventures. For each venture ω ∈ Ω,
let a(ω) ⊂ I be the nonempty set of participants in the venture, who jointly determine the
contract terms µω that specify how the participants interact with one another in the venture.
Let us assume that the vector µω of contract terms is chosen from some convex and compact
setMω ⊂ RNω .

Consider a bilateral trading network for example. Each venture ω is a trading relation-
ship between two agents, i.e., a(ω) = {i, i′}. A typical vector µω of contract terms may be
(3, 5,−7), which represents “i gives 3 apples and 5 bananas to i′, and i′ gives 7 dollars to i
in return”. Each agent may be involved in multiple trading relationships with other agents,
since the model allows the sets of participants of two ventures to overlap or even coincide.
More generally, a vector of contract terms may include price, quantity, time, location, etc.
We assume that the zero vector 0ω of RNω is inMω, which represents the state of having
no interaction among participants in the venture ω. We say that the venture ω is active if

12This example explains why the “role” r is not a redundant concept in the model given that we already
have the notion “contract type” x. In this example, it is clear that a type x contract may treat the families
involved in the contract differently even if the families are of the same type. In the same contract, one family
might be a supplier of the female worker under a high wage while another family might be a supplier of
both workers under a low wage, which makes a significant difference to the families’ welfare. It is therefore
important to use the concept of “roles” to keep track of the well-being of each family.
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µω 6= 0ω.
A matching is described by the contract terms of each venture. Formally, a matching

is µ = {µω}ω∈Ω. Let M̄ :=
∏

ω∈ΩMω be the set of all matchings. For each agent i,
let Ωi := {ω ∈ Ω : i ∈ a(ω)} be the set of all ventures that include i as a participant.
Agent i has a complete and transitive preference relation %i on

∏
ω∈Ωi
Mω, the contract

terms in all ventures ω with i ∈ a(ω). We assume that %i is convex in the sense that the
upper contour set {{µω}ω∈Ωi ∈

∏
ω∈Ωi
Mω : {µω}ω∈Ωi %i {µ′ω}ω∈Ωi} is convex for all

{µ′ω}ω∈Ωi ∈
∏

ω∈Ωi
Mω. In addition, we also assume that %i is upper semi-continuous in

the sense that each upper contour set is closed. We can naturally extend the domain of the
preference relation %i to M̄ s.t. µ %i µ

′ if {µω}ω∈Ωi %i {µ′ω}ω∈Ωi . Let us denote by 0 the
trivial matching in M̄, i.e., the matching with µω = 0ω for all ventures ω ∈ Ω. LetM be
the set of all individually rational matchings in M̄, i.e.,M := {µ ∈ M̄ : µ %i 0 for all i ∈
I}. Because only individually rational matchings are relevant to our analysis of the core, in
the following discussion, a matching always refers to an individually rational matching.13

We say that agent i participates in a matching if there exists at least one active venture
that includes i as a participant. LetMi be the set of matchings inM that agent i participates
in, i.e., we define Mi := {µ ∈ M : ∃ω ∈ Ωi s.t. µω 6= 0ω}. Let a(µ) := {i ∈ I :

µ ∈Mi} be the set of participants of the matching µ. A matching µ is blocked by a
nontrivial matching µ̂ if all participants of block µ̂ are willing to participate in the block.
The formal definition is provided below.

Definition 5. A matching µ is blocked by a nontrivial matching µ̂ if µ̂ �i µ for all i ∈ a(µ).
The core of this economy is the set of matchings that are not blocked by any nontrivial
matching.

To apply our main theorem (Theorem 1), let us consider the following matching game
{I,M, φ, (Di)i∈I ,A} induced by this finite economy. Let the set I of players be the set of
agents and the setM be the set of individually rational matchings as defined above. For
each matching µ ∈ M, let the participation value φi(µ) of agent i be 1 if i ∈ a(µ) and be
0 otherwise. For each agent i, let the relation Di be the preference relation %i restricted to
Mi. The relation A follows the blocking relation in Definition 5, i.e., we let µ̂ A µ if µ̂ is
nontrivial and µ̂ blocks µ.

13We have implicitly addressed the feasibility of a matching together with its individual rationality. When
an agent finds the combination of contract terms under a matching technologically infeasible, we may al-
ternatively consider the matching to be strictly less preferred by the agent than the trivial matching 0. In
this case, individual rationality also captures technological feasibility, and the convexity of preferences also
captures the convexity of technology set.
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Proposition 2. With convex and upper semi-continuous preferences, the matching game

induced by the finite economy model is regular and convex. Therefore, the core of the finite

economy is nonempty by Theorem 1.

Convex preferences are crucial to the nonempty core result for the finite economy. This
reminds us of the classical result on the existence of Walrasian equilibrium with convex
preferences and production sets (Arrow and Debreu (1954), McKenzie (1954)). Our model
subsumes general equilibrium models as a special case by restricting the contract terms of
a venture to only specify the transfers of goods and money among its participants. There-
fore, Proposition 2 implies a nonempty core in general equilibrium models with convex
preferences and technology sets.

4.3 Large-Firm Labor Market with Peer Preferences

This subsection generalizes the model of Che, Kim, and Kojima (2019) to allow for work-
ers’ peer preferences. Consider a labor market model with finitely many firms and a con-
tinuum of workers of finitely many types. Each firm is large in the sense that it may hire a
continuum of workers of positive mass. Workers have preferences not only over firms but
also over their colleagues. Note that this model is not a special case of our first application
discussed in Section 4.1 because it does not satisfy the small contract assumption. In this
model, each contract involves a firm and all its employees, which constitute a significant
fraction of the labor market.

We show that this model satisfies our notion of convex matching games and therefore
has a nonempty core if (1) each firm has convex preferences over type distributions of its
workers, (2) each worker has convex preferences over type distributions of her colleagues,
and (3) each worker dislikes colleagues of the same type as hers. The third assumption
is more relevant in applications where worker types are identified by skills and so more
colleagues with the same skill type implies lower pay and a higher chance of job loss due
to competition. For this reason, we call the third assumption within-type competition.

Let F be the finite set of firms and Θ be the finite set of worker types. For each worker
type θ ∈ Θ, let m(θ) > 0 be the mass of type θ workers. The vector m ∈ RΘ

++ is therefore
the type distribution of all workers in the market. A set of workers can be described by
its type distribution x ∈ RΘ

+, where x(θ) ∈ [0,m(θ)] is the mass of type θ workers in the
set. Let X :=

∏
θ∈Θ[0,m(θ)] be the set of all type distributions. A matching µ specifies

the set of employees of each firm f . Formally, a matching is defined as µ = {µf}f∈F ,
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where µf ∈ X represents the type distributions of the employees of firm f . Feasibility
requires

∑
f∈F µf ≤ m. The difference m−

∑
f∈F µf is therefore the type distribution of

unemployed workers.
Each firm f ∈ F has preferences over the type distributions of its workers. Formally,

each firm f has a complete and transitive preference relation %f on X . We assumed that
%f is convex in the sense that the upper contour set {x ∈ X : x %f x

′} is convex for each
x′ ∈ X . We further assume that %f is upper semi-continuous in the sense that each upper
contour set is closed.

Workers of type θ share the same preferences over firms and type distributions of their
colleagues. Formally, type θ workers have a complete and transitive preference relation %θ

on (F ×X)∪{∅}, where a typical alternative (f, x) ∈ F ×X represents the state of being
employed by firm f with a set of colleagues of type distribution x and the special alternative
∅ represents the state of being unemployed. This setup subsumes no peer preferences as a
special case by letting (f, x) ∼θ (f ′, x′) whenever f = f ′. We assume that %θ is convex
in the sense that for each alternative a ∈ (F × X) ∪ {∅} and each firm f ∈ F , the upper
contour set {x ∈ X : (f, x) %θ a} is convex. Moreover, we also assume that %θ is upper
semi-continuous in the sense that each upper contour set is closed.

Additionally, we assume that for each worker type θ and firm f , we have (f, x) %θ

(f, x′) for all x, x′ ∈ X with x(θ) = 0 and x′(θ) > 0, and we call this assumption within-

type competition. This assumption is relevant when there is strong competition between
colleagues of the same type to the extent that a worker’s primary consideration regarding
her colleagues is whether there are colleagues of the same type as hers, while all other
aspects of the type distribution of her colleagues are secondary considerations. Combined
with the convexity of %θ, within-type competition implies that the upper contour set {x ∈
X : (f, x) %θ (f, x′)} of a type distribution x′ with x′(θ) > 0 contains the pyramid whose
apex is x′ and whose base is the rectangle {x ∈ X : x(θ) = 0}. In particular, the within-
type competition assumption implies that if two type distributions x and x′ agree on the
mass of all worker types other than θ, we have (f, x′) %θ (f, x) iff x′(θ) ≤ x(θ).

We say that a matching µ = {µf}f∈F is individually rational if µf %f 0 for each
firm f and (f, µf ) %θ ∅ for each worker type θ with µf (θ) > 0. LetM be the set of all
individually rational matchings. Because only individually rational matchings are relevant
to our analysis of the core, in the following discussion, a matching always refers to an
individually rational matching.

A simple matching (f, x) refers to a matching µ with µf = x 6= 0 and µf ′ = 0 for all
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f ′ 6= f . A matching is blocked by a simple matching if the firm involved in the block is
willing to form the block and there are sufficiently many workers of each type willing to
join the block. The formal definition is as below.

Definition 6. A matching µ is blocked by a simple matching (f, x) if x �f µf and

m(θ)−
∑
f ′∈F

µf ′(θ) +
∑

f ′∈F :(f,x)�θ(f ′,µf ′ )

µf ′(θ) ≥ x(θ)

for all worker types θ ∈ Θ. The core of the labor market is the set of matchings that are not
blocked by any simple matching.

In the definition, m(θ) −
∑

f ′∈F µf ′(θ) on the left-hand side of the inequality is the
mass of unemployed type θ workers and

∑
f ′∈F :(f,x)�θ(f ′,µf ′ )

µf ′(θ) is the mass of type θ
workers who are employed but are willing to join the block (f, x). The right-hand side of
the inequality is the mass of type θ workers necessary to form the block. In principle, we
may consider the notion of blocking by any nontrivial matching. However, it is without loss
to focus on blocking by simple matchings in this setting because each agent can participate
in no more than one contract at a time. Note that nonsimple matchings are combinations of
simple matchings. If a nonsimple matching blocks some other matching, each of its simple
components must also block it.

To apply our main theorem (Theorem 1), let us consider the following matching game
{I,M, φ, (Di)i∈I ,A} induced by the labor market. The set I of players is the set of firms
and worker types, i.e., I = F ∪ Θ. The set M corresponds to the set of individually
rational matchings. For each matching µ ∈ M, let the participation value φf (µ) of firm
be 0 if µf = 0 and 1 otherwise, and let the participation value φθ(µ) of worker type θ be
the fraction of employed type θ workers, i.e., φθ(µ) :=

∑
f∈F µf (θ)/m(θ). For each firm

f , the relation Df simply corresponds to firm f ’s preferences extended to Mf := {µ ∈
M : µf 6= 0}, i.e., we let µ′ Df µ if µ′f %f µf . For each worker type θ, the aggregate
preference relation Dθ onMθ := {µ ∈M :

∑
f∈F µf (θ) > 0} is defined as follows. First,

we let (f, x).θµwhenever µ is nonsimple.14 Second, for two simple matchings (f ′, x′) and
(f, x), let (f ′, x′) D θ(f, x) if (f ′, x′) %θ (f, x). For the relation A, we let µ̂ 6A µ whenever

14We defined Dθ in this way for convenience because only the relation Dθ restricted to simple matchings
matters for the analysis. Alternatively, we could define Dθ by comparing the worst type θ workers under two
matchings in general, but this will not make a difference.
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µ̂ is nonsimple. For a simple matching (f, x), we let (f, x) A µ if x �f µf and

m(θ)−
∑
f ′∈F

µf ′(θ) +
∑

f ′∈F :(f,x)�θ(f ′,µf ′ )

µf ′(θ) > 0

for all worker types θ ∈ Θ with x(θ) > 0. Note that the relation A defined above is less
demanding than blocking in Definition 6, where the right-hand side of the inequality is x(θ)

instead of 0. Therefore, the core of the matching game is even stronger than the core of the
labor market.

Proposition 3. With convex and upper semi-continuous preferences and within-type com-

petition, the matching game induced by the large-firm labor market with peer preferences

is regular and convex. Therefore, the core of the labor market is nonempty by Theorem 1.

Proof. See Appendix A.

The assumption of within-type competition is indispensable to the nonempty core re-
sult. We may adapt Example 4 in the Introduction to show that the core may be empty when
the assumption fails. Consider a labor market with two firms and three types of workers,
A, B, and C, each of which is of mass 1. The two firms regard all three types of workers
as perfect substitutes and wish to hire as many workers as possible. All workers consider
the two firms perfect substitutes and are only concerned about their colleagues. If a type A
worker works with a set of colleagues of type distribution (xA, xB, xC), her utility is

uA(xA, xB, xC) = (100+2
√
xB + 1+

√
xC + 1)·

√
xA + 1−10000·max{0, xA+xB+xC−2}.

If unemployed, her utility is 0. The utility function of the other two types of workers are
cyclic symmetric to type A’s. We can show that the core of this labor market is empty
despite that the firms and workers have convex and continuous preferences. To see the
empty core, note that there is strong within-type synergy to the extent that it is always
beneficial for all workers of the same type to join one firm. Additionally, due to the last
term of the utility function, the size of a firm will never exceed 2. Therefore, this labor
market is essentially equivalent to the three-individual roommate example (Example 1),
which we know has an empty core.
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5 Stability

This section provides a unified understanding of the stability results of Azevedo and Hat-
field (2018) and Che, Kim, and Kojima (2019) in the special case of labor markets with
a continuum of workers of finitely many types. Azevedo and Hatfield (2018) consider a
small-firm setting in which there is a continuum of firms and a continuum of workers and
each firm employs finitely many workers. By contrast, Che, Kim, and Kojima (2019) con-
sider a large-firm setting with finitely many firms, each of which is matched to a continuum
of workers. We show that these two different settings with stability as the solution concept
both satisfy the notion of convex matching games and therefore that stable matchings exist
despite the difficulty of complementary preferences that typically leads to the nonexistence
of stable matchings in a finite market.

The result in Section 4.1 implies a nonempty core in the small-firm setting of Azevedo
and Hatfield (2018), and the result in Section 4.3 implies a nonempty core in the large-firm
setting of Che, Kim, and Kojima (2019). However, in many-to-one matching models, the
notion of stability is stronger than that of the core, and so the nonempty core results do not
imply the existence of stable matchings. Under the notion of the core, to form a block, a
firm cannot retain any worker it has already employed since such a worker does not strictly
benefit from the block. By contrast, under the notion of stability, to form a block, a firm
may retain some of its employees while hiring some new workers. This difference makes it
easier to form a block under the notion of stability and therefore makes the stability notion
stronger than that of the core.15

Fortunately, the framework of convex matching games can also be used to obtain sta-
bility results. Because our main theorem (Theorem 1) asserts the existence of matchings
that are not blocked according to the blocking relation A, if A corresponds to the notion
of blocking under stability, the core of the matching game, as defined in Definition 1,
will become the set of stable matchings. To maintain the applicability of the main theo-
rem, we will modify the aggregate preference relation Di s.t. the induced matching game
{I,M, φ, (Di)i∈I ,A} still satisfies the notion of convex matching games.

15This relation only holds in many-to-one matching problems. In more general settings such as many-to-
many matching problems, the two notions are not related in a straightforward way.
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5.1 Small-firm Labor Market

In this subsection, let us consider the small-firm setting of Azevedo and Hatfield (2018).
Let I = F ∪ Θ be the finite set of agent types, where F is the set of types of firms and Θ

is the set of types of workers. Let m(f) > 0 be the mass of type f firms and m(θ) > 0 be
the mass of type θ workers. We assume that for some integer N each firm can hire no more
than N workers.

Let us regard the employment relation between a firm and all its employees as one
contract. Therefore, a contract type (f, x) is specified by the type f of the firm and quantity
x(θ) of type θ workers θ employed by the firm. Let X := {x ∈ ZΘ

+ :
∑

θ∈Θ x(θ) ≤ N}
be the set of type distributions of employees. Let X+ := X\{0} be the set of nonzero
distributions, so the set of all contract types is F×X+. A matching µ is specified by the type
distribution of contracts, or formally, it is a measure on F ×X+.16 Feasibility requires that∑

x∈X+
µ(f, x) ≤ m(f) for each firm type f and

∑
(f,x)∈F×X+

µ(f, x) · x(θ) ≤ m(θ) for
each worker type θ. Clearly, the difference m(f)−

∑
x∈X+

µ(f, x) =: µ(f,0) is the mass
of type f firms employing no workers and the differencem(θ)−

∑
(f,x)∈F×X+

µ(f, x) ·x(θ)

is the mass of unemployed type θ workers.
Type f firms have a complete and transitive preference relation %f on X and type

θ workers have a complete and transitive preference relation %θ on F ∪ {∅}, where ∅
represents the state of being unemployed. We say that a contract type (f, x) ∈ F × X+

is individually rational if x %f 0 and f %θ ∅ for all θ with x(θ) > 0. A matching µ

is individually rational if its support {(f, x) ∈ F × X+ : µ(f, x)} > 0} only contains
individually rational contract types. In the following discussion, a matching always refers
to an individually rational matching.

To define stability, let us use the term “s-block” to distinguish it from “c-block”, the
notion of blocking under the core as in Definition 4. We say that a matching µ is simple

if its support is a singleton. Because in our current setting, each agent can participate in
no more than one contract at a time, it is without loss to focus on blocking by a simple
matching. Note that nonsimple matchings are combinations of simple matchings and that
if a nonsimple matching blocks some other matching, each of its simple components must

16Note that we only need to keep track of the measure on contract type (f, x)s (µx in Section 4.1) since
the measure on bundles of roles (µi in Section 4.1) is redundant. In this model, a typical role for type f firms
is “being the firm in a contract of type (f, x)” and a typical role for type θ workers is “being a type θ worker
in a contract of type (f, x)”, and therefore, the roles are uniquely pinned down by the associated agent type
and contract type. Then, the measure on bundles is also pinned down because each agent can play no more
than one role at a time.
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also block it.

Definition 7. A matching µ is s-blocked by a simple matching with support {(f, x)} if there
exists (f, x′) ∈ F ×X with µ(f, x′) > 0 s.t. (1) x �f x′ if x′ 6= 0 and (2) for each worker
type θ with x(θ) > 0, either we have x′(θ) > 0, or

∑
(f,x)∈F×X+

µ(f, x) · x(θ) < m(θ), or
there exists (f ′′, x′′) in the support of µ with x′′(θ) > 0 and f ′′ ≺θ f . A matching inM is
stable if it is not s-blocked by any simple matching.

Condition (2) in the definition above requires that for each type θ of workers necessary
to form the s-block, either the firm participating in the s-block has already employed some
type θ workers, or some type θ workers are unemployed, or some type θ workers strictly
prefer the firm to their current employer. By contrast, the notion of the c-block (Definition
4) does not regard the first group of workers, i.e., those already employed by the firm, as
available participants in a block since those workers do not strictly benefit from the block.17

Therefore, it is easier to form an s-block than to form a c-block, and so stability is stronger
than the notion of the core in this setting.

To apply our main theorem (Theorem 1), let us consider the following matching game
{I,M, φ, (Di)i∈I ,A} induced by the labor market. Let I , the set of players, be the set
of firms and worker types, i.e., I = F ∪ Θ. Let M be the set of individually rational
matchings. For each matching µ ∈ M, let the participation value φf (µ) of firm type f be
the fraction of type f firms employing some workers, i.e., φf (µ) =

∑
x∈X+

µ(f, x)/m(f),
and let the participation value φθ(µ) of worker type θ be the fraction of employed type θ
workers, i.e., φθ(µ) :=

∑
(f,x)∈F×X+

µ(f, x) · x(θ)/m(θ).
For each agent type i ∈ F ∪ Θ, let the relation Di be defined s.t. µ′ . iµ if µ′ is simple

and µ is nonsimple. For two simple matchings µ, µ′ ∈ Mf , let their support be {(f, x)}
and {(f, x′)}, respectively, and the relation Df is defined s.t. µ′ Df µ if x′ %f x. For two
simple matchings µ, µ′ ∈Mθ, let their support be {(f, x)} and {(f ′, x′)}, respectively, and
the relation Dθ is defined as follows. First, we arbitrarily break ties for %θ to obtain a strict
preference ordering %′θ on F and let µ′ . θµ if f ′ �′θ f . Second, if f ′ = f , we let µ′ D θµ

if x′ %f x, i.e., we use the firm’s preferences as a tie-breaker in the second step.
For the blocking relation A, we let µ̂ 6A µ if µ̂ is nonsimple. If µ̂ is simple, we let µ̂ A µ

if µ̂ s-blocks µ according to Definition 7.
17Formally, by applying Definition 4 to the current setting, a matching µ is c-blocked by a simple matching

with the support {(f, x)} if there exists (f, x′) ∈ F ×X with µ(f, x′) > 0 s.t. (1) x �f x′ if x′ 6= 0 and (2)
for each worker type θ with x(θ) > 0, either we have

∑
(f,x)∈F×X+

µ(f, x) · x(θ) < m(θ) or there exists
(f ′′, x′′) in the support of µ with x′′(θ) > 0 and f ′′ ≺θ f . The difference is that it does not accept the first
case x′(θ) > 0 as in the notion of the s-block.
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Proposition 4 (Azevedo and Hatfield (2018)). Without peer preferences, the matching

game induced by the small-firm labor market model with stability as its solution concept is

regular and convex. Therefore, stable matchings exist by Theorem 1.

Proof. See Appendix A.

Note that the original stability result in Azevedo and Hatfield (2019) is more general
than the proposition above. Their result also applies to many-to-many matching where
agents on one side of the market have substitutable preferences, which subsumes many-to-
one matching as a special case.

5.2 Large-firm Labor Market

In this subsection, let us consider the large-firm setting of Che, Kim, and Kojima (2019). As
in Section 4.3, let F be the finite set of firms and Θ be the finite set of worker types. For each
worker type θ ∈ Θ, let m(θ) > 0 be the mass of type θ workers. Let X :=

∏
θ∈Θ[0,m(θ)]

be the set of all worker type distributions. A matching µ specifies the type distribution of
the set of employees of each firm f ∈ F . Formally, a matching is defined as µ = {µf}f∈F ,
where µf ∈ X represents the type distributions of the employees of firm f . Feasibility
requires that

∑
f∈F µf ≤ m, and the difference m −

∑
f∈F µf is the type distribution of

unemployed workers. Each firm f has a complete and transitive preference relation %f on
X , which is assumed to be convex and continuous. Each type θ worker has a complete and
transitive preference relation %θ on F ∪ {∅}, where the symbol ∅ represents the state of
being unemployed. This assumes away workers’ peer preferences.

We say that a matching µ = {µf}f∈F is individually rational if µf %f 0 for each firm
f and f %θ ∅ for each worker type θ with µf (θ) > 0. LetM be the set of all individually
rational matchings. In the following discussion, a matching always refers to an individually
rational matching.

To define stability, let us use the term “s-block” to distinguish it from “c-block”, the
notion of blocking under the core in Definition 6. A simple matching (f, x) refers to a
matching µ with µf = x 6= 0 and µf ′ = 0 for all f ′ 6= f . Again, it is without loss to focus
on blocking by simple matchings.

Definition 8. A matching µ is s-blocked by a simple matching (f, x) if x �f µf and

µf (θ) +m(θ)−
∑
f ′∈F

µf ′(θ) +
∑

f ′∈F :f ′≺θf

µf ′(θ) ≥ x(θ)
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for all worker types θ ∈ Θ. A matching inM is stable if it is not s-blocked by any simple
matching.

The left-hand side of the inequality in the definition is the mass of type i agents available
for block (f, x), and the right-hand side is the mass of type θ workers necessary to form
the block. Note that on the left-hand side the term µf (θ) is the mass of type θ workers
who are already employed by firm f , m(θ) −

∑
f ′∈F µf ′(θ) is the mass of unemployed

type θ workers, and
∑

f ′∈F :f ′≺θf µf ′(θ) is the mass of type θ workers who are employed by
other some other firm f ′ strictly less preferred to f . By contrast, the notion of the c-block
(Definition 6) does not regard the first group of workers, i.e., those already employed by the
firm, as available participants in a block since those workers do not strictly benefit from the
block.18 Therefore, it is easier to form an s-block than to form a c-block, and so stability is
stronger than the notion of the core in this setting.

To apply our main theorem (Theorem 1), let us consider the following matching game
{I,M, φ, (Di)i∈I ,A} induced by the labor market. Let I , the set of players, be the set
of firms and worker types, i.e., I = F ∪ Θ. Let M be the set of individually rational
matchings. For each matching µ ∈ M, let the participation value φf (µ) of firm f be 0 if
µf = 0 and be 1 otherwise, and let the participation value φθ(µ) of worker type θ be the
fraction of employed type θ workers, i.e., φθ(µ) :=

∑
f∈F µf (θ)/m(θ).

For each firm f , the relation Df simply corresponds to firm f ’s preferences extended
toMf := {µ ∈ M : µf 6= 0}, i.e., we let µ′ Df µ if µ′f %f µf . For each worker type θ,
the aggregate preference relation Dθ onMθ := {µ ∈ M :

∑
f∈F µf (θ) > 0} is defined as

follows. First, we let (f, x). θµ whenever µ is nonsimple. Second, we arbitrarily break ties
for %θ to obtain a strict preference ordering %′θ on F , and for two simple matchings (f ′, x′)

and (f, x) with f ′ 6= f , let (f ′, x′) . θ(f, x) if f ′ �′θ f . Finally, for two simple matchings
(f, x′) and (f, x) associated with the same firm f , we let (f, x′) D θ(f, x) if x′(θ) ≤ x(θ).

For the blocking relation A, we let µ̂ 6A µ whenever µ̂ is nonsimple. For a simple

18More formally, by applying Definition 6 to our current setting, a matching µ is c-blocked by a simple
matching (f, x) if x �f µf and

m(θ)−
∑
f ′∈F

µf ′(θ) +
∑

f ′:f ′≺θf

µf ′(θ) ≥ x(θ).

The difference is that µf (θ) is not counted towards the left-hand side as in the notion of the s-block.
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matching (f, x), we let (f, x) A µ if x �f µf and

µf (θ) +m(θ)−
∑
f ′∈F

µf ′(θ) +
∑

f ′∈F :f ′≺θf

µf ′(θ) > x(θ)

for all worker types θ ∈ Θ with x(θ) > 0. Note that the blocking relation A here is slightly
more demanding than s-blocking in Definition 8 because the inequality above is strict.19

Despite this slight difference, the set of unblocked matchings in the sense of A is exactly
the set of stable matchings in this labor market because if a matching µ is s-blocked by a
simple matching (f, x), there exists x′ < x close enough to x s.t. (f, x′) A µ due to the
continuity of %f .

Proposition 5 (Che, Kim, and Kojima (2019)). If firms’ preferences are continuous and

convex and workers have no peer preferences, the matching game induced by the large-firm

labor market model with stability as its solution concept is regular and convex. Therefore,

stable matchings exist by Theorem 1.

Proof. See Appendix A.

Although our setting focuses on a finite set of worker types, Proposition 5 can be gener-
alized to allow for a compact set of worker types as in Che, Kim, and Kojima (2019) using
the standard argument that a compact set can be approximated arbitrarily well by a finite
set. See Appendix B for details.

6 Conclusion

This paper provides a nonempty core result in a class of games we label “convex matching
games”, which may allow for arbitrary contracting networks, multilateral contracts, and
complementary preferences. Using Scarf’s lemma, we show that the core is nonempty in
all regular and convex matching games.

The structure of the core of matching games in general remains an open question.
Azevedo and Leshno (2016) find that the stable matching is unique in a large-firm labor
market when firms have responsive preferences. Later, this uniqueness result is general-
ized by Che, Kim, and Kojima (2019) to preferences that satisfy substitutability, the law of

19Here, we cannot define A exactly as s-blocking because doing so will may violate the closedness of
NB(µ), and therefore, we cannot invoke Theorem 1.
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aggregate demand, and a richness condition. However, I find that it is not straightforward
to further generalize this uniqueness result to matching games in general. In fact, the core
of a convex matching game may even fail to be convex. Consider, for example, the follow-
ing continuum roommate problem with four types of individuals, A, B, C, and D, each of
which is of mass 1. Assume that type A individuals have high income, type D individuals
have low income, and type B and type C individuals have middle income. Each individual
prefers a roommate with higher income, but for some other reason, they consider matching
with another individual of the same type unacceptable. Consider the matching µ1 in which
all type A individuals are matched with type B individuals and all type C individuals are
matched with type D individuals, and we can verify that it is in the core. By symmetry, the
matching µ2 in which all type A individuals are matched with type C individuals and all
type B individuals are matched with type D individuals is also in the core. However, note
that any convex combination of µ1 and µ2 is not in the core since it is blocked by type B
and type C individuals who are matched to a type D individual. Therefore, the core, which
is equivalent to the set of stable matchings in this one-to-one matching setting, is not even
a convex set.

Appendix A: Proofs

Proof of Proposition 1. First, we show that the matching game is regular.
(i)M is compact.
For a compact metric space S and a nonnegative real number c, let BM(S, c) be the set

of all Borel measures on S with the measure of S no greater than c. By Banach-Alaoglu
theorem, we know that BM(S, c) is compact w.r.t. the weak-* topology.20

Recall that the set of individually rational bundles for type i agents is

Bi = {βi ∈ BM(Ri, N) : βi is integer-valued, βi 6= 0i, and βi %i 0i}.

We claim that Bi is closed in BM(Ri, N) and therefore also compact. To see this,
take a sequence of bundles (βki ) in Bi convergent to β0

i ∈ BM(Ri, N). It is sufficient to
show that β0

i ∈ Bi.21 First, to see that β0
i is integer-valued, suppose that β0

i ({ri}) is not an
integer for some role ri ∈ Ri. Let a < β0

i ({ri}) < a + 1 where a is an integer. Then there

20See, for example, Lemma 3 in Appendix A of Che, Kim, and Kojima (2019) for more detailed arguments.
21Note that inBM(Ri, N), closedness is equivalent to sequential closedness because the weak-* topology

is metrizable by, for example, the Prokhorov metric introduced by Prokhorov (1956).
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exists a closed ball B̄ centered at ri with positive radius s.t. β0
i (B̄) < a + 1. Consider the

interior of B̄, i.e., the open ball B, and we have β0
i (B) ≥ β0

i ({ri}) > a. By Portmanteau
theorem22, we have lim sup βki (B̄) ≤ β0

i (B̄) and lim inf βki (B) ≥ β0
i (B). Because each βki

is integer-valued, for sufficiently large k, we have βki (B̄) ≤ a and βki (B) ≥ a + 1, which
contradicts B ⊂ B̄. Second, to see β0

i 6= 0i, note that βki (Ri) ≥ 1 and βki (Ri) → β0
i (Ri)

implies β0
i (Ri) ≥ 1. Third, βki %i 0i for each k implies β0

i %i 0i in the limit because %i is
continuous. Therefore, Bi is compact, which in turn implies that the space BM(Bi,mi)

where µi lies is also compact.
Because X does not contain the empty contract, we have

∑
i∈I xi(Ri) > 0 for all x ∈

X . Because xi(Ri) is continuous in x and X is compact, we know that
∑

i∈I xi(Ri) ≥ δ

for some δ > 0. So for each matching µ, we have∫
X

∑
i∈I

xi(Ri)dµx ≥
∫
X

δdµx ≥ δ · µx(X),

which implies

µx(X) ≤ δ−1
∑
i∈I

∫
X

xi(Ri)dµx = δ−1
∑
i∈I

∫
Bi

βi(Ri)dµi ≤ δ−1
∑
i∈I

∫
Bi

Ndµi

= δ−1N
∑
i∈I

µi(Bi) ≤ δ−1N
∑
i∈I

mi. (2)

Therefore the measure µx lies in the compact space BM(X, δ−1N
∑

i∈I mi).
Recall that the set of individually rational matchings is

M = {(µx, (µi)i∈I) ∈ M̄ :

∫
Bi

βidµi =

∫
X

xidµx for each i},

where M̄ := BM(X, δ−1N
∑

i∈I mi) ×
∏

i∈I BM(Bi,mi). By Tychonoff theorem, the
product space M̄ is compact since we have shown that each of its component is compact.
To show compactness ofM, it is sufficient to show thatM is closed in M̄. Take any se-
quence (µk) inM convergent to some µ0 ∈ M̄. We want to show

∫
Bi
βidµ

0
i =

∫
X
xidµ

0
x,

i.e.,
∫
Bi
βidµ

0
i and

∫
X
xidµ

0
x are the same Borel measure on Ri. Note that the sequence of

measures
∫
Bi
βidµ

k
i converges to

∫
Bi
βidµ

0
i and the the sequence of measures

∫
X
xidµ

k
x con-

22See, for example, Theorem 2.8.1 of Ash and Doleans-Dade (2009).
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verges to
∫
X
xidµ

0
x in weak-* topology.23 Because µk ∈M implies

∫
Bi
βidµ

k
i =

∫
X
xidµ

k
x

for each k, we have
∫
Bi
βidµ

0
i =

∫
X
xidµ

0
x in the limit. Therefore, the setM is compact.

(ii) NB(µ) is closed for each nontrivial matching µ.
By Definition 4, we have

NB(µ) = {µ′ ∈M : µ 6A µ′}

=
⋃

i:µi(Bi)>0

{µ′ ∈M : µ′i(Bi) = mi and µ′i({βi ∈ Bi : βi ≺i βi(µ)}) = 0}.

To show closedness of NB(µ), it is sufficient to show that the set

NBi(µ) := {µ′ ∈M : µ′i(Bi) = mi and µ′i({βi ∈ Bi : βi ≺i βi(µ)}) = 0}

is closed for each i with µi(Bi) > 0. Take any sequence (µk) in NBi(µ) convergent to
some µ0 ∈M. By Portmanteau theorem, we have µ0

i (Bi) = limµki (Bi) = mi and

µ0
i ({βi ∈ Bi : βi ≺i βi(µ)}) ≤ lim inf µki ({βi ∈ Bi : βi ≺i βi(µ)}) = 0

because the set {βi ∈ Bi : βi ≺i βi(µ)} is open by continuity of %i. Therefore we have
µ0 ∈ NBi(µ) and so NB(µ) is closed.

Second, we show that the matching game is convex.
(i) Let µ∗ =

∑n
j=1w

jµj be a φ-convex combination of finitely many matchings {µj}nj=1

inM. We need to show that µ∗ ∈M.
To do so, we verify that

µ∗i (Bi) =
n∑
j=1

wjµji (Bi) = mi

n∑
j=1

wjφi(µ
j) ≤ mi,

which implies µ∗i ∈ BM(Bi,mi). Besides, the accounting identity also holds under φ-

23To see this, note that for any continuous function fi on Ri, we have∫
Bi

(

∫
Ri

fidβi)dµ
k
i →

∫
Bi

(

∫
Ri

fidβi)dµ
0
i

and ∫
X

(

∫
Ri

fidxi)dµ
k
x →

∫
X

(

∫
Ri

fidxi)dµ
0
x

because the continuity of fi implies that
∫
Ri
fidβi and

∫
Ri
fidxi are continuous functions on Bi and X

respectively.
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convex combinations since∫
Bi

βidµ
∗
i =

n∑
j=1

wj
∫
Bi

βidµ
j
i =

n∑
j=1

wj
∫
X

xidµ
j
x =

∫
X

xidµ
∗
x.

Following the same arguments in Inequality (2) we have µ∗x(X) ≤ δ−1N
∑

i∈I mi, which
implies µ∗x ∈ BM(X, δ−1N

∑
i∈I mi). Therefore, we know that µ∗ ∈M.

(ii) If µ∗ =
∑n

j=1w
jµj is a φ-convex combination of {µj}nj=1 and ∃ player i ∈ I s.t.

φi(µ) > 0,
∑n

j=1 w
jφi(µ

j) = 1, and µj Di µ for all j with wj > 0 and φi(µj) > 0, we
need to show that µ 6A µ∗.

For the agent i found by the existence statement above, we have

µ∗i (Bi) =
n∑
j=1

wjµji (Bi) = mi

n∑
j=1

wjφi(µ
j) = mi,

i.e., all type i agents are matched under µ∗. Moreover, for each j withwj > 0 and µji (Bi) >

0, we have φi(µj) > 0 and so µj Di µ, i.e., βi %i βi(µ) for all βi in the support of µji . This
implies24 µji ({βi ∈ Bi : βi ≺i βi(µ)}) = 0, and therefore

µ∗i ({βi ∈ Bi : βi ≺i βi(µ)}) =
n∑

j:wj>0,µji (Bi)>0

wjµji ({βi ∈ Bi : βi ≺i βi(µ)} = 0.

Therefore, we have shown that no type i agent is willing to accept the worst bundle under µ.
Because φi(µ) > 0 implies µi(Bi) > 0, i.e., the participation of type i agent is necessary to
form the block µ, we have µ 6A µ∗ by Definition 4. This completes the proof of convexity
of the matching game.

Proof of Proposition 2. First, we show that the matching game is regular.
(i)M is compact.
Recall that the setM of individually rational matchings is

M = {µ ∈
∏
ω∈Ω

Mω : µ %i 0 for each i},

24This implication relies on Bi admitting a countable basis, which is guaranteed here by compactness and
metrizability of Bi .
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which is compact because eachMω is compact and %i is upper semi-continuous.
(ii) NB(µ) is closed for each nontrivial matching µ.
By Definition 5, we have

NB(µ) = {µ′ ∈M : µ 6A µ′} =
⋃

i∈a(µ)

{µ′ ∈M : µ′ %i µ},

which is a closed set because each {µ′ ∈ M : µ′ %i µ} is closed by upper semi-continuity
of %i.

Second, we show that the matching game is convex.
(i) Let µ∗ =

∑n
j=1w

jµj be a φ-convex combination of finitely many matchings {µj}nj=1

inM. We need to show that µ∗ ∈M.
For each venture ω ∈ Ω, let i be an arbitrary agent in a(ω) and we have

µ∗ω =
n∑
j=1

wjµjω =
∑

j:wj>0,i∈a(µj)

wjµjω + (1−
∑

j:wj>0,i∈a(µj)

wj) · 0ω. (3)

This shows that µ∗ω is a convex combination of µjω’s and 0ω since
∑

j:wj>0,i∈a(µj) w
j =∑n

j=1 w
jφi(µ

j) ≤ 1. Because µjω’s and 0ω are inMω, we have µ∗ω ∈ Mω by convexity of
Mω. Therefore we have µ∗ ∈

∏
ω∈ΩMω.

Moreover, for each agent i, Equation (3) holds for all ω ∈ Ωi and the weights of the
convex combination do not depend on ω. This implies that {µ∗ω}ω∈Ωi is a convex combi-
nation of {µjω}ω∈Ωi’s and {0ω}ω∈Ωi . Because µj ∈ M implies {µjω}ω∈Ωi %i {0ω}ω∈Ωi for
each j, by convexity of %i, we have {µ∗ω}ω∈Ωi %i {0ω}ω∈Ωi , i.e., µ∗ %i 0, which implies
µ∗ ∈M.

(ii) If µ∗ =
∑n

j=1w
jµj is a φ-convex combination of {µj}nj=1 and ∃ player i ∈ I s.t.

φi(µ) > 0,
∑n

j=1 w
jφi(µ

j) = 1, and µj Di µ for all j with wj > 0 and φi(µj) > 0, we
need to show that µ 6A µ∗.

For the agent i found by the existence statement above, we have
∑

j:wj>0,i∈a(µj) w
j =∑n

j=1 w
jφi(µ

j) = 1, and therefore µ∗ω =
∑

j:wj>0,i∈a(µj) w
jµjω implies that µ∗ω is a convex

combination of those µjω’s. For each j with wj > 0 and i ∈ a(µj), we have φi(µj) = 1 > 0

and therefore µj Di µ, which implies {µjω}ω∈Ωi %i {µω}ω∈Ωi . By convexity of %i, we
have {µ∗ω}ω∈Ωi %i {µω}ω∈Ωi , i.e., µ∗ %i µ. Therefore we have µ 6A µ∗ because φi(µ) > 0

implies i ∈ a(µ). This completes the proof of convexity of the matching game.
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Proof of Proposition 3. First, we show that the matching game is regular.
(i)M is compact.
Recall that the setM of individually rational matchings is

M = {µ ∈ XF :
∑
f∈F

µf ≤ m,µf %f 0 for each f , and µf (θ) > 0 implies (f, µf ) %θ ∅}.

To show closedness ofM, take a sequence of matchings (µk) in NB(f, x) convergent to
µ0 ∈ XF , and we want to show µ0 ∈ M. By upper semi-continuity of %f , µkf %f 0

implies µ0
f %f 0 in the limit. Besides, µ0

f (θ) > 0 implies µkf (θ) > 0 for sufficiently large
k, which in turn implies (f, µkf ) %θ ∅. Therefore we have (f, µ0

f ) %θ ∅ in the limit and so
µ0 ∈M.

BecauseXF is bounded, the setM is compact (w.r.t. the standard Euclidean topology).
(ii) NB(µ) is closed for each nontrivial matching µ.
If µ is nonsimple, the way we define the blocking relation A implies NB(µ) = M,

which is a closed set. So we only need to consider the case in which µ is a simple matching.
Let µ be (f, x).

Take a sequence of matchings (µk) inNB(f, x) convergent to µ0 ∈M, and we want to
show µ0 ∈ NB(f, x). By definition of A, µk ∈ NB(f, x) implies that either (a) µkf %f x

or (b)
m(θ)−

∑
f ′∈F

µkf ′(θ) +
∑

f ′∈F :(f,x)�θ(f ′,µk
f ′ )

µkf ′(θ) = 0 (4)

for some worker type θ ∈ Θ with x(θ) > 0. If there are infinitely many k’s that satisfy
condition (a) µkf %f x, by upper semi-continuity of %f we have µ0

f %f x in the limit
and so µ0 ∈ NB(µ). If there are only finitely many k’s that satisfy condition (a), there
must exist infinitely many k’s that satisfy condition (b). By finiteness of Θ, there must
exists some θ ∈ Θ with x(θ) > 0 s.t. Equality (4) holds along a subsequence of (µk). By
upper semi-continuity of %θ, (f, x) �θ (f ′, µ0

f ′) implies (f, x) �θ (f ′, µkf ′) for sufficiently
large k, which in turn implies

∑
f ′∈F :(f,x)�θ(f ′,µ0

f ′ )
µkf ′(θ) ≤

∑
f ′∈F :(f,x)�θ(f ′,µk

f ′ )
µkf ′(θ) for

sufficiently large k. Therefore, Equality (4) holds in the limit, i.e.,

m(θ)−
∑
f ′∈F

µ0
f ′(θ) +

∑
f ′∈F :(f,x)�θ(f ′,µ0

f ′ )

µ0
f ′(θ) = 0,

and we have µ0 ∈ NB(µ). This completes the proof of regularity of the matching game.
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Second, we show that the matching game is convex.
(i) Let µ∗ =

∑n
j=1w

jµj be a φ-convex combination of finitely many matchings {µj}nj=1

inM. We need to show that µ∗ ∈M.
For each θ ∈ Θ, we have

∑
f∈F

µ∗f (θ) =
∑
f∈F

n∑
j=1

wjµjf (θ) =
n∑
j=1

[wj
∑
f∈F

µjf (θ)] =
n∑
j=1

[wjφθ(µ
j)m(θ)] ≤ m(θ).

Therefore, we have
∑

f∈F µ
∗
f ≤ m and so µ∗ is feasible. Next, to show µ∗f %f 0, note that∑

j:µjf 6=0w
j =

∑n
j=1 w

jφf (µ
j) ≤ 1, and so we have

µ∗f =
n∑
j=1

wjµjf =
∑
j:µjf 6=0

wjµjf + (1−
∑
j:µjf 6=0

wj) · 0,

i.e., µ∗f is a convex combination of µjf ’s and 0. Because µj ∈ M, we have µjf %f 0 and so
µ∗f %f 0 by convexity of %f .

Moreover, we also need to show that µ∗f (θ) > 0 implies (f, µ∗f ) %θ ∅. Suppose we have
µ∗f (θ) > 0. Note that

µ∗f =
n∑
j=1

wjµjf =
∑

j:µjf (θ)>0

wjµjf +
∑

j:µjf 6=0,µjf (θ)=0

wjµjf + (1−
∑
j:µjf 6=0

wj) · 0,

i.e., µ∗f is a convex combination of µjf ’s and 0 since
∑

j:µjf 6=0w
j ≤ 1. Because µj ∈

M, we have (f, µjf ) %θ ∅ for each j with µjf (θ) > 0. Because
∑

j:µjf (θ)>0w
jµjf (θ) =

µ∗f (θ) > 0, there must exist at least one ĵ with µĵf (θ) > 0. By the assumption of within-
type competition, we have (f,0) %θ (f, µĵf ) %θ ∅ and for each j with µjf (θ) = 0, we have
(f, µjf ) %θ (f, µĵf ) %θ ∅ . By convexity of %θ, we have (f, µ∗f ) %θ ∅. Therefore we have
shown that µ∗ ∈M.

(ii) If µ∗ =
∑n

j=1w
jµj is a φ-convex combination of {µj}nj=1 and ∃ player i ∈ I s.t.

φi(µ) > 0,
∑n

j=1 w
jφi(µ

j) = 1, and µj Di µ for all j with wj > 0 and φi(µj) > 0, we
need to show that µ 6A µ∗.

This holds by definition if µ is nonsimple and so we only need to consider the case in
which µ is a simple matching (f, x).

Case A: The player i is the firm f .
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Note that for each j with wj > 0 and µjf 6= 0, we have φf (µj) = 1 > 0 and so µj Df

(f, x), which implies µjf %f x. Besides, note that
∑

j:wj>0,µjf 6=0w
j =

∑n
j=1 w

jφf (µ
j) =

1. Therefore the type distribution µ∗f =
∑n

j=1 w
jµjf =

∑
j:wj>0,µjf 6=0w

jµjf is a convex

combination of those µjf ’s. So we have µ∗f %f x by convexity of %f . This implies (f, x) 6A
µ∗.

Case B: The player i is a worker type θ.
Because φθ(f, x) > 0 implies x(θ) > 0 and

∑n
j=1w

jφθ(µ
j) = 1 implies m(θ) =∑

f ′∈F µ
∗
f ′(θ), to show (f, x) 6A µ∗, it is sufficient to show (f ′, µ∗f ′(θ)) %θ (f, x) for each

f ′ with µ∗f ′(θ) > 0.
Take any f ′ with µ∗f ′(θ) > 0. Note that

µ∗f ′ =
∑

j:wj>0,µj
f ′ (θ)>0

wjµjf ′ +
∑

j:µj
f ′ 6=0,µj

f ′ (θ)=0

wjµjf ′ + (1−
∑

j:µj
f ′ 6=0

wj) · 0,

i.e., µ∗f ′ is a convex combination of µjf ′’s and 0 since
∑

j:µjf 6=0w
j ≤ 1. For each j with

wj > 0 and µjf ′(θ) > 0, we have φθ(µj) > 0 and therefore µj Dθ (f, x). By definition of
Dθ, this implies that µj is a simple matching. Because µjf ′(θ) > 0, the simple matching µj

is exactly (f ′, µjf ′). Then (f ′, µjf ′) Dθ (f, x) implies (f ′, µjf ′) %θ (f, x). Because∑
j:wj>0,µj

f ′ (θ)>0

wjµjf ′(θ) = µ∗f ′(θ) > 0,

there must exist at least one ĵ with wĵ > 0 and µĵf ′(θ) > 0. By the assumption of within-

type competition, we have (f ′,0) %θ (f ′, µĵf ′) %θ (f, x) and for each j with µjf ′(θ) = 0,

we have (f ′, µjf ′) %θ (f ′, µĵf ′) %θ (f, x) . By convexity of %θ, we have (f ′, µ∗f ′) %θ (f, x).
Therefore we have shown that (f, x) 6A µ∗, which completes the proof of convexity of the
matching game.

Proof of Proposition 4. First, we show that the matching game is regular.
(i)M is compact.
Recall that the setM of individually rational matchings is

M =

µ ∈ RF×X+

+ :

µ(f, x) = 0 if (f, x) is not individually rational,∑
x∈X+

µ(f, x) ≤ m(f) for each f,
and

∑
(f,x)∈F×X+

µ(f, x) · x(θ) ≤ m(θ) for each θ

 .
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Clearly, M is closed and bounded, and therefore compact (w.r.t. the standard Euclidean
topology).

(ii) NB(µ) is closed for each nontrivial matching µ.
If µ is nonsimple, the way we define the blocking relation A implies NB(µ) = M,

which is a closed set. So we only need to consider the case in which µ is a simple matching.
Let the support of µ be {(f, x)}.

Take a sequence of matchings (µk) in NB(µ) convergent to µ0 ∈ M, and we want
to show µ0 ∈ NB(µ). By definition of s-blocking, µk ∈ NB(µ) implies that for each
(f, x′) ∈ F × X with µk(f, x′) > 0, either (1) x′ 6= 0 and x′ %f x or (2) for some
worker type θ with x(θ) > 0, we have x′(θ) = 0,

∑
(f,x)∈F×X+

µk(f, x) ·x(θ) = m(θ), and
f ′′ %θ f for any (f ′′, x′′) in the support of µk with x′′(θ) > 0. To show µ0 ∈ NB(µ), take
any (f, x′) in the support of µ0. There exists a subsequence of (µk) s.t. µk(f, x′) > 0 along
the subsequence. If condition (1) “x′ 6= 0 and x -f x

′” of µ0 ∈ NB(µ) does not hold, then
condition (2) must hold for every µk in the subsequence, which implies that it also holds in
the limit µ0 since Θ is a finite set. Therefore we have µ0 ∈ NB(µ), which completes the
proof of regularity of the matching game.

Second, we show that the matching game is convex.
(i) Let µ∗ =

∑n
j=1 w

jµj be a φ-convex combination of finitely many matchings {µj}nj=1

inM. We need to show that µ∗ ∈M.
If (f, x) is not individually rational, µj ∈ M implies µj(f, x) = 0 and therefore

µ∗(f, x) =
∑n

j=1 w
jµj(f, x) = 0. Moreover, for each firm type f we have

∑
x∈X+

µ∗(f, x) =
∑
x∈X+

n∑
j=1

wjµj(f, x) =
n∑
j=1

[wj
∑
x∈X+

µj(f, x)]

= m(f) ·
n∑
j=1

wjφf (µ
j) ≤ m(f),

and for each worker type θ we have

∑
(f,x)∈F×X+

µ∗(f, x) · x(θ) =
n∑
j=1

[wj
∑

(f,x)∈F×X+

µj(f, x) · x(θ)]

= m(θ) ·
n∑
j=1

wjφθ(µ
j) ≤ m(θ).
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Therefore, we have µ∗ ∈M.
(ii) If µ∗ =

∑n
j=1w

jµj is a φ-convex combination of {µj}nj=1 and ∃ player i ∈ I s.t.
φi(µ) > 0,

∑n
j=1 w

jφi(µ
j) = 1, and µj Di µ for all j with wj > 0 and φi(µj) > 0, we

need to show that µ 6A µ∗.
This holds by definition if µ is nonsimple and so we only need to consider the case in

which µ is a simple matching. Let the support of µ be {(f, x)}.
Case A: The player i is the firm type f .
To show µ 6A µ∗, by definition of s-block (Definition 7), it is sufficient to show that for

each (f, x′) ∈ F ×X with µ∗(f, x′) > 0, we have x′ 6= 0 and x′ %f x.
For each (f, x′) ∈ F×X with µ∗(f, x′) > 0, we know that x′ 6= 0 because

∑n
j=1w

jφf (µ
j) =

1 implies
∑

x′∈X+
µ∗(f, x′) = m(f), which in turn implies µ∗(f,0) = 0. Then we have∑n

j=1 w
jµj(f, x′) = µ∗(f, x′) > 0 and so there exists j s.t. wj > 0 and µj(f, x′) > 0. This

implies φf (µj) > 0 and so µj Df µ. By definition of the relation Df , the matching µj must
be simple and so its support is exactly {(f, x′)}. Then µj Df µ implies x′ %f x.

Case B: The player i is some worker type θ.
Note that φθ(µ) > 0 implies x(θ) > 0 and that

∑n
j=1 w

jφθ(µ
j) = 1 implies∑

(f ′′,x′′)∈F×X+

µ∗(f ′′, x′′) · x′′(θ) = m(θ).

Therefore, to show µ 6A µ∗, it is sufficient to show that for each (f, x′) ∈ F × X with
µ∗(f, x′) > 0, either (1) x′ 6= 0 and x′ %f x or (2) x′(θ) = 0 and f ′′ %θ f for each (f ′′, x′′)

in the support of µ∗ with x′′(θ) > 0.
Take any (f, x′) ∈ F × X with µ∗(f, x′) > 0. If x′(θ) = 0, condition (2) above

must hold. To see this, take any (f ′′, x′′) in the support of µ∗ with x′′(θ) > 0. Because∑n
j=1 w

jµj(f ′′, x′′) = µ∗(f ′′, x′′) > 0, there exists some j s.t. wj > 0 and µj(f ′′, x′′) > 0.
This implies φθ(µj) > 0 and so µj Dθ µ. By definition of the relation Dθ, the matching µj

must be simple and so its support is exactly {(f ′′, x′′)}. Then µj Dθ µ implies f ′′ %θ f .
On the other hand, if x′(θ) > 0, condition (1) must hold. To see this, because x′ 6= 0,we
have

∑n
j=1 w

jµj(f, x′) = µ∗(f, x′) > 0. So there exists j s.t. wj > 0 and µj(f, x′) > 0.
This implies φθ(µj) > 0 and so µj Dθ µ. By definition of the relation Dθ, the matching
µj must be simple and so its support is exactly {(f, x′)}. Then µj Dθ µ implies x′ %f x

since we use the firm’s preferences as the tie-breaker by definition of Dθ. This completes
the proof of convexity of the matching game.
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Proof of Proposition 5. First, we show that the matching game is regular.
(i)M is compact.
Recall that the setM of individually rational matchings is

M = {µ ∈ XF :
∑
f∈F

µf ≤ m,µf %f 0 for each f , and µf (θ) = 0 if f ≺θ ∅}.

By continuity of %f , the setM is closed. Therefore it is also compact (w.r.t. the standard
Euclidean topology) since XF is bounded.

(ii) NB(µ) is closed for each nontrivial matching µ.
If µ is nonsimple, the way we define the blocking relation A implies NB(µ) = M,

which is a closed set. So we only need to consider the case in which µ is a simple matching
(f, x).

Take a sequence of matchings (µk) inNB(f, x) convergent to µ0 ∈M, and we want to
show µ0 ∈ NB(f, x). By definition of A, µk ∈ NB(f, x) implies that either (a) µkf %f x

or (b)
µkf (θ) +m(θ)−

∑
f ′∈F

µkf ′(θ) +
∑

f ′∈F :f ′≺θf

µkf ′(θ) ≤ x(θ) (5)

for some worker type θ ∈ Θ with x(θ) > 0. If there are infinitely many k’s that satisfy
condition (a) µkf %f x, by continuity of %f we have µ0

f %f x in the limit and so µ0 ∈
NB(µ). If there are only finitely many k’s that satisfy condition (a), there must exist
infinitely many k’s that satisfy condition (b). By finiteness of Θ, there must exists some
θ ∈ Θ with x(θ) > 0 s.t. Inequality (5) holds along a subsequence of (µk). So the
inequality also holds in the limit µ0 and again we have µ0 ∈ NB(µ). This completes the
proof of regularity of the matching game.

Second, we show that the matching game is convex.
(i) Let µ∗ =

∑n
j=1 w

jµj be a φ-convex combination of finitely many matchings {µj}nj=1

inM. We need to show that µ∗ ∈M.
Following exactly the same argument as in the proof of Proposition 3, we can show∑
f∈F µ

∗
f ≤ m andµ∗f %f 0 for each f . To show that f ≺θ ∅ implies µ∗f (θ) = 0, it

is sufficient to note that f ≺θ ∅ implies µjf (θ) = 0 for each j and therefore µ∗f (θ) =∑n
j=1w

jµjf (θ) = 0.
(ii) If µ∗ =

∑n
j=1w

jµj is a φ-convex combination of {µj}nj=1 and ∃ player i ∈ I s.t.
φi(µ) > 0,

∑n
j=1 w

jφi(µ
j) = 1, and µj Di µ for all j with wj > 0 and φi(µj) > 0, we

need to show that µ 6A µ∗.
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This holds by definition if µ is nonsimple and so we only need to consider the case in
which µ is a simple matching. Let µ be (f, x).

Case A: The player i is the firm f .
We can show (f, x) 6A µ∗ in this case following exactly the same argument as in the

proof of Proposition 3.
Case B: The player i is a worker type θ.
Because φθ(f, x) > 0 implies x(θ) > 0 and

∑n
j=1w

jφθ(µ
j) = 1 implies m(θ) =∑

f ′∈F µ
∗
f ′(θ), to show (f, x) 6A µ∗, it is sufficient to show

µ∗f (θ) +
∑

f ′∈F :f ′≺θf

µ∗f ′(θ) ≤ x(θ). (6)

For each j with wj > 0 and φθ(µj) > 0, we have µj Dθ (f, x). Therefore µj is also
a simple matching by definition of Dθ. Let such µj be (f j, xj). For each j with wj > 0,
φθ(µ

j) > 0, and f j = f , the relation (f j, xj) Dθ (f, x) implies xj(θ) ≤ x(θ), and so we
have

µ∗f (θ) =
n∑
j=1

wjµjf (θ) =
∑

j:wj>0,µjf (θ)>0,fj=f

wjxj(θ) ≤
∑

j:wj>0,µjf (θ)>0,fj=f

wjx(θ)

≤ x(θ) ·
∑
j:fj=f

wj ≤ x(θ) ·
n∑
j=1

wjφf (µ
j) ≤ x(θ).

For each j with wj > 0, φθ(µj) > 0, and f j 6= f , the relation (f j, xj) Dθ (f, x) implies
f j %θ f , and so we have

∑
f ′∈F :f ′≺θf

µ∗f ′(θ) =
n∑
j=1

[wj
∑

f ′∈F :f ′≺θf

µjf ′(θ)] =
∑

j:wj>0,φθ(µj)>0

[wj
∑

f ′∈F :f ′≺θf

µjf ′(θ)]

=
∑

j:wj>0,φθ(µj)>0,fj≺θf

wjxj(θ) = 0.

Combining the two observations above, we have Inequality (6) as desired. This completes
the proof of convexity of the matching game.
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Appendix B: Large-firm Labor Market with Compact Set
of Worker Types

We can generalize Proposition 5 to allow for a compact set of worker types as in Che, Kim,
and Kojima (2019) using the standard argument that a compact set can be approximated
arbitrarily well by a finite set.

Let us first adapt the setting in Section 8 to consider a continuum of workers whose
type are distributed in a compact metric space Θ according to the Borel measure m. Let
X be the set of Borel measure x’s with x ≤ m,25 and we define a matching µ = {µf}f∈F
in the same way as in Section 8. Let X̄ ⊃ X be the set of Borel measure x’s on Θ with
x(Θ) ≤ m(Θ). Each firm f has a complete and transitive preference relation %f on X̄ and
we assume that %f is convex and continuous. For each complete and transitive preference
relation % on F ∪ {∅}, we let Θ% be the set of worker type θ’s with %θ=% and we assume
that each Θ% is a Borel set. Furthermore, we also assume that for each firm f , the set of
worker type θ’s with f %θ ∅ is closed.26

We say that a matching µ = {µf}f∈F is individually rational if for each firm f , we have
µf %f 0 and µf ({θ ∈ Θ : f ≺θ ∅}) = 0. As in Definition 8, a matching µ is s-blocked by
a simple matching (f, x) if x �f µf and µf +m−

∑
f ′∈F µf ′ +

∑
f ′∈F :f ′≺θf µf ′ ≥ x, and

a matching is stable if it is individually rational and not s-blocked by any simple matching.
Now we show the existence of stable matchings. For each positive integer n, find a

finite set Θn
% in Θ% s.t. the distance from each θ ∈ Θ% to Θn

% is less than 1/n.27 Partition
Θ% as

⋃
θ∈Θn

%
Sn(θ) s.t. each Sn(θ) is a Borel set that lies in the open ball B1/n(θ) ∩ Θ%.

Let Θn :=
⋃

% Θn
% and then {Sn(θ)}θ∈Θn is a finite partition of the worker type space Θ.

Define the Borel measure mn on Θ with the finite support Θn as

mn(Θ′) :=
∑

θ∈Θ′∩Θn

m(Sn(θ))

for each Borel set Θ′. By construction, we have mn(Θ%) = m(Θ%) for each % and so
mn ∈ X̄ . Furthermore, the sequence of measures (mn) converges to m. To see this, for

25When comparing two Borel measures x and x′ on Θ, the inequality x ≤ x′ means that x(Θ′) ≤ x′(Θ′)
for each Borel set Θ′.

26This assumption will be satisfied if, for example, the workers’ preferences are represented by a system
of utility functions u(f, θ) continuous in θ

27This can be done because the collection of open balls B1/n(θ) with θ ∈ Θn
% is an open cover of the

closure of Θn
%, which is compact.
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each continuous function f on Θ, we have

|
∫

Θ

fdmn −
∫

Θ

fdm| = |
∑
θ∈Θn

f(θ)m(Sn(θ))−
∑
θ∈Θn

∫
Sn(θ)

f(θ′)dm|

≤
∑
θ∈Θn

∫
Sn(θ)

|f(θ′)− f(θ)|dm,

which converges to 0 as n→∞ because Sn(θ) ⊂ B1/n(θ) by construction and the contin-
uous function f on the compact set Θ is uniformly continuous.

For each mn, we invoke Proposition 5 to find a stable matching µn under the discrete
worker type distribution mn. Because each µnf lies in the compact metrizable space X̄ , the
sequence of matchings (µn) contains a subsequence of (µnk) convergent to some µ∗. We
show that the limit µ∗ is a stable matching under the worker type distributionm. To see this,
first note that µ∗ is indeed a feasible matching, i.e.,

∑
f µ
∗
f ≤ m, because

∑
f µ

nk
f ≤ mnk

holds for each k. Second, µ is individually rational because µnkf %f 0 for each k implies
µ∗f %f 0 since %f is continuous, and µnkf ({θ ∈ Θ : f ≺θ ∅}) = 0 for each k implies
µ∗f ({θ ∈ Θ : f ≺θ ∅}) = 0 by Portmanteau theorem since the set {θ ∈ Θ : f ≺θ ∅} is
open.

Now it is only left to show that µ∗ is unblocked. Suppose to the contrary that µ∗ is
s-blocked by some simple matching (f, x). Define the measure xn on Θ as xn(Θ′) :=∑

θ∈Θ′∩Θn x(Sn(θ)) for each Borel set Θ′. Also, let zn := µnf + mn −
∑

f ′∈F µ
n
f ′ +∑

f ′∈F :f ′≺θf µ
n
f ′ be the type distribution of workers available to firm f to form a block

under µn. Similarly, in the limit we let z∗ := µ∗f +m∗−
∑

f ′∈F µ
∗
f ′ +

∑
f ′∈F :f ′≺θf µ

∗
f ′ . Let

zn ∧ xn denote the meet of zn and xn, i.e., the greatest lower bound of zn and xn.28 Be-
cause znk → z∗, xnk → x, and z∗ ≥ x since (f, x) s-blocks µ∗, we have (znk ∧ xnk)→ x.
Again since (f, x) s-blocks µ∗, we have x �f µ∗f , which implies (znk ∧ xnk) �f µnkf for
sufficiently large k because %f is continuous. Then the simple matching (f, znk ∧ xnk)
s-blocks µnkf , which contradicts to the construction of µnk as a stable matching under the
worker type distribution mn.

Therefore, the limiting matching µ∗ is stable under the worker type distribution m.

28Formally, the meet zn ∧ xn is defined as

(zn ∧ xn)(Θ′) := inf
Borel setE in Θ

zn(Θ′ ∩ E) + xn(Θ′\E)

for each Borel set Θ′.
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