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Abstract

We show that a preference domain is single-crossing and maximal Condorcet
if and only if it can be represented as a relay, a structure that is simple
to construct and verify. Using this characterization, we find that there are
at most two domains that are single-crossing and maximal Condorcet, and
we also find another characterization of such domains in terms of inversion
triples.
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1. Introduction

A domain is said to be single-crossing if the preferences in it can be
linearly ordered so that along this ordering the relative positions of any pair
of alternatives swap at most once. This property is economically intuitive and
easily checked in applications, e.g., voting models of redistributive income
taxation and trade union bargaining behavior [1, 2], whereas [3] provided an
efficient way to verify this property for domains in general.

Single-crossing domains have many nice properties that have attracted
the attention of researchers. In particular, single-crossing domains have the
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Condorcet property, i.e., pairwise majority voting never admits cycles if pref-
erences of a group of agents are from such a domain. In fact, single-crossing
further implies that there is always an agent in the group whose preference
coincides with the group preference aggregated by means of the pairwise
majority voting — this fact is known as the Representative Voter Theo-
rem [4, 5, 6]. Moreover, the collective choice predicted by the Representative
Voter Theorem can be implemented in dominant strategies through a sim-
ple mechanism [7], among the many social choice rules implementable in
dominant strategies on single-crossing domains [8].

Recent research has revealed that understanding single-crossing domains
could be crucial to understanding Condorcet domains in general. Indeed,
Galambos and Reiner [9] proved that any connected maximal Condorcet do-
main of maximal width is a union of single-crossing domains. An important
question of the same spirit, then, is the following: when is a maximal Con-
dorcet domain also by itself single-crossing? One answer to this question was
given by Puppe and Slinko [10] who gave a characterization in terms of a
property called the pairwise concatenation condition.

In this paper, we provide an alternative combinatorial characterization
which allows a deeper understanding of single-crossing and maximal Con-
dorcet domains.4 Specifically, it allows us to conclude that a maximal Con-
dorcet domain is single-crossing if and only if it can be represented by a
combinatorial structure that we call relay, which is rather intuitive to under-
stand and easy to construct and verify. With the help of our characterization
we show that, when there are more than two alternatives, there are essen-
tially only two domains that are single-crossing and maximal Condorcet. In
addition, the relay representation makes it easy to construct the set of in-
version triples that characterizes a single-crossing and maximal Condorcet
domain.

2. Preliminaries

Consider the standard social choice environment where there is a set X =
{1, 2, . . . , n} of n alternatives. We will focus on strict preferences, i.e., linear
orders on X, and we denote L(X) as the set of all strict preferences on X.
Sometimes we represent a preference by its implied ranking of alternatives,

4A combinatorial characterization of single-crossing domains in terms of forbidden mi-
nors was given in [3].
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i.e., the ranking ijk . . . represents the preference � where i � j � k � . . ..
A domain is a subset of L(X).

A domain D is said to be a single-crossing domain if there is an ordering
(�1, . . . ,�|D|) of preferences in D such that i �1 j implies either i �s j for
every s, or there is a unique k where i �s j for every s ≤ k and j �s i for
every s > k. Simply put, traveling along �1, �2, . . . the relative positions of
i and j swap at most once. In addition, if D is not a proper subset of another
single-crossing domain, then we say it is a maximal single-crossing domain.

A domain D is said to be a Condorcet domain if Condorcet voting cycles
do not arise given D, i.e., for any group of agents whose preferences are from
D and any three alternatives i, j, k, if more than half of the agents prefer i
to j and more than half of the agents prefer j to k, then more than half of
the agents prefer i to k. In addition, if D is not a proper subset of another
Condorcet domain, then we say it is a maximal Condorcet domain.

Let us introduce a few more concepts that will help illustrate the structure
of L(X) and its relation to single-crossing and Condorcet domains. For any
preference �∈ L(X), we say that a pair of alternatives (i, j) is an inversion in
this preference if i < j but j � i. Thus there is no inversion in the preference
12 . . . n whereas every pair of alternatives is an inversion in n(n − 1) . . . 1.
For two preferences �,�′∈ L(X), we say that � covers �′ if the set of
inversions in �′ is a subset of the set of inversions in �. The covering relation
is obviously reflexive, antisymmetric and transitive, and it hence induces a
partial order on L(X), which is known as the weak Bruhat order. With the
weak Bruhat order, L(X) becomes a lattice [11] (Theorem 14.4).

It is easy to verify that any maximal chain in L(X) (on the lattice given
by the weak Bruhat order) is a maximal single-crossing domain. Also, every
maximal single-crossing domain is a maximal chain in L(X) up to relabelling
of the alternatives. Indeed, given any maximal single-crossing domain (�1

, ...,�m) (ordered so that the single-swap condition holds), we can rename
the alternatives so that the first preference is �′1= 12 . . . n and the last is
�′m= n(n − 1) . . . 1, then what we obtain is a maximal chain (�′1, . . . ,�′m)
in L(X) where m = 1

2
n(n− 1) + 1 and each �′s is covered by the next �′s+1.

Clearly, this chain is characterized by a sequence of m−1 pairs of alternatives

(i1, j1), (i2, j2), . . . , (im−1, jm−1) (1)

from the set {(i, j) | 1 ≤ i < j ≤ n}. The pair (is, js) means that is and
js are neighbors in �s and �s+1, is �t js for t = 1, . . . , s, and js �t is for
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t = s + 1, . . . , n, while all other relations between alternatives coincide in
�s and �s+1. Roughly speaking, the passage from �s to �s+1 is a swap of
neighbors is and js.

The following theorem is implied from [9] Theorem 2 and is explicitly
stated in [10] Theorem 9.

Theorem 1. A maximal single-crossing domain D is a maximal Condorcet
domain if and only if the sequence (1) characterizing D satisfies the following:

{is, js} ∩ {is+1, js+1} 6= ∅ for every s ∈ {1, 2, . . . ,m− 1}. (2)

The condition (2) is called the pairwise concatenation condition in [10].
Theorem 1 is the first known characterization of domains that are single-
crossing and maximal Condorcet, and it will also be an important building
block for our characterization.

Let us introduce another concept that our result will shed some light on.
Along a maximal chain on L(X) the preference 12 . . . n is transformed into
n . . . 21 by a sequence of swaps of neighboring alternatives. Focusing on any
three alternatives i < j < k, there are two ways their relative rankings can
be transformed from ijk ito kji along the chain, namely

ijk → jik → jki→ kji or ijk → ikj → kij → kji.

If it is the second transformation that takes place, then [i, j, k] is called an
inversion triple of the maximal chain. It is known that two maximal chains
can have the same set of inversion triples, in which case the two chains are
said to be equivalent. By [9] Theorem 2, a domain that contains a maximal
chain C is a maximal Condorcet domain if and only if it is the union of all
maximal chains equivalent to C. Therefore, inversion triples provide a very
succinct and convenient characterization of maximal Condorcet domains.

As an example, let us consider the maximal chain whose preferences are
represented as columns of the following matrix

1 2 2 2 2 4 4
2 1 3 3 4 2 3
3 3 1 4 3 3 2
4 4 4 1 1 1 1


It can be characterized by the sequence of swapping pairs

(1, 2), (1, 3), (1, 4), (3, 4), (2, 4), (2, 3).

4



Since the pairwise concatenation condition is satisfied, this single-crossing
domain is a maximal Condorcet domain. It is not too difficult to see that it
is characterized by a single inversion triple [2, 3, 4]. Later on, we will show
that our main result provides an easy way of finding the characterizing set of
inversion triples of a domain that is single-crossing and maximal Condorcet.

3. Relays

We will show that a domain is single-crossing and maximal Condorcet if
and only if it can be represented by a structure that we call a relay. Let us
first use an example to illustrate what a relay looks like. In this example
X = {1, 2, . . . , 7}. The domain is represented by the following matrix where
each column corresponds to a preference.

1 2 2 2 2 2 2 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7
2 1 3 3 3 3 3 3 3 3 7 2 3 3 3 3 3 3 6 6 6 6
3 3 1 4 4 4 4 4 4 7 3 3 2 4 4 4 4 6 3 4 4 5
4 4 4 1 5 5 5 5 7 4 4 4 4 2 5 5 6 4 4 3 5 4
5 5 5 5 1 6 6 7 5 5 5 5 5 5 2 6 5 5 5 5 3 3
6 6 6 6 6 1 7 6 6 6 6 6 6 6 6 2 2 2 2 2 2 2
7 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


The domain is a maximal chain satisfying the pairwise concatenation

condition, and is hence single-crossing and maximal Condorcet. In addition,
with the help of the red-coloring, it is not difficult to see that the left-to-
right procession of preferences follows a distinct pattern that leaves behind
an undulating trajectory like a damped wave. In particular, focusing on the
red-colored alternatives, we see that the procession starts with the movement
of 1 that keeps going down from the top until it reaches the bottom. Then
7, which occupies the bottom just before, as if having received a relay baton
from 1 as they meet, starts moving up until it reaches the top. As 7 reaches
the top, the then top alternative, 2, starts to move down. However, instead
of stopping at the bottom, 2 stops at second-to-bottom, handing the baton to
the then second-to-bottom alternative, 6, which starts to go up until reaching
second-to-top. This to-and-fro relay run continues, each leg ending with the
initial kth-to-top alternative reaching the kth-to-bottom position, or the kth-
to-bottom alternative reaching the kth-to-top position, until, eventually, the
initial ranking is reversed. The red trajectory is undulating because of the
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to-and-fro relay motion, and it is damped because a later runner covers a
shorter distance than an earlier runner.

We call such a procession of preferences a top-down relay, because it starts
with the top alternative going down. In general, a top-down relay with n
alternatives is a sequence of preferences (�1, ...,�m) such that the procession
of �i as i grows follows a pattern analogous to the example: First, the initial
top alternative moves down, in each step swapping with the alternative below,
until reaching the bottom; then, the initial bottom alternative moves up,
in each step swapping with the alternative above, until reaching the top;
then, the initial second-to-top alternative moves down until reaching the
second-to-bottom; then, the initial second-to-bottom alternative moves up
until reaching second-to-top, and so on so forth, until the initial preference
is reversed.

A more formal definition would be the following: A sequence of prefer-
ences (�1, ...,�m) over n alternatives is a top-down relay if and only if it can
be represented (up to relabelling the alternatives) as the matrix Rn(1, ..., n)
recursively defined as follows:

R1(1) = [1], R2(1, 2) =

[
1 2
2 1

]
,



1 2 · · · 2 2 · · · 2 n · · · n
2 1 · · · 3 3 · · · n
3 3 · · · 4 4 · · · 3
...

... · · · ...
... · · · ... Rn−2(2, . . . , n− 1)

...
... · · · ...

... · · · ...
n− 1 n− 1 · · · 1 n · · · n− 1
n n · · · n 1 · · · 1 1 · · · 1


. (3)

It is straightforward to construct an analogous procession of preferences
that starts with the bottom alternative moving up, then followed by the
top alternative moving down, and so on so forth. We call such a procession
of preferences a bottom-up relay. There is an obvious symmetry between a
top-down and a bottom-up relay: one can be obtained by reversing every
preference (column) of the other. Top-down relays and bottom-up ones are
collectively called relays. We say that domain D has a relay representation
if there is an ordering (�1, . . . ,�m) of preferences in it that is a relay.
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4. Results

We are ready to report here our results, whereas the proofs are found in
the Appendix. First, the main result:

Theorem 2. A domain D is single-crossing and maximal Condorcet if and
only if it has a relay representation.

The main result allows us to obtain two further observations about single-
crossing domains. The first observation is that, when there are at least three
alternatives, there are only two domains that are single-crossing and maximal
Condorcet; if there are fewer alternatives, then there is only one such domain.
This is because, up to relabelling of the alternatives, there is a unique top-
down relay and a unique bottom-up relay. Moreover, in the case there are
fewer than three alternatives the two relays are the same.

Corollary 1. If n ≤ 2, then L(X) is the unique single-crossing and maximal
Condorcet domain. If n ≥ 3, then there are, up to relabeling the alternatives,
exactly two single-crossing and maximal Condorcet domains, one represented
by a top-down relay and the other by a bottom-up relay.

The second observation gives a characterization of single-crossing and
maximal Condorcet domains in term of inversion triples.

Corollary 2. A domain D over n alternatives is single-crossing and maximal
Condorcet if and only if, up to relabelling the alternatives, its set of inversion
triples is T ↓n(1, 2, ..., n) or T ↑n(1, 2, ..., n) recursively defined as follows:

T ↓1 (1) = T ↑1 (1) = T ↓2 (1, 2) = T ↑2 (1, 2) = ∅,
T ↓n(1, 2, . . . , n) = T ↓n−2(2, 3, . . . , n− 1) ∪ {[i, i, n] | i < j < n},
T ↑n(1, 2, . . . , n) = {[i, j, k] | 1 ≤ i < j < k ≤ n}\T ↓n(1, 2, . . . , n).

Specifically, if its set of inversion triples is T ↓n(1, 2, ..., n), then D has a top-
down relay representation; else it has a bottom-up relay representation.

Corollary 2 directly follows the recursive definition of relays. Given this
corollary, it is easy to see that a top-down relay with n alternatives has∑

i≥1,n−2i≥2

(
n− 2i

2

)
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inversion triples and a bottom-up relay with n alternatives has(
n

3

)
−

∑
i≥1,n−2i≥2

(
n− 2i

2

)
=

∑
i≥1,n−2i+1≥2

(
n− 2i + 1

2

)
inversion triples.

5. Conclusion

We characterize domains that are single-crossing and maximal Condorcet
in terms of relays, which implies there are (up to relabelling of the alter-
natives) exactly two such domains and which also helps us find another
characterization of such domains in terms of inversion triples. Our result
is equivalent to a characterization of Condorcet domains whose associated
median graph (as defined in [10]) is a line graph. It would be interesting to
enumerate and characterize Condorcet domains whose median graph has a
more complicated structure.

Appendix: proof of Theorem 2

IfD has a relay representation, then it is easy to verify thatD is a maximal
single-crossing domain that satisfies the pairwise concatenation condition.
Thus, by Theorem 1, D is also a maximal Condorcet domain.

Now we prove the other direction. Suppose D is a single-crossing and
maximal Condorcet domain over alternatives X = {1, 2, ..., n}. It follows
that D contains exactly one pair of reversed preferences. Without loss of
generality (by relabelling of the alternatives) assume they are 12 . . . n and
n(n − 1) . . . 1. Let P be the matrix where preferences in D are written as
columns in such an order that the neighboring swapping pairs are linked as
in (2). We will show that P is a relay. A couple of observations are helpful.

Lemma 1. P has one of the following submatrices:

Q1 =



1 ? · · · ? ? · · · ? n
? 1 · · · ? ? · · · n ?
? ? · · · ? ? · · · ? ?
...

... · · ·
...

... · · ·
...

...
? ? · · · 1 n · · · ? ?
n n · · · n 1 · · · 1 1


, Q2 =



1 1 · · · 1 n · · · n n
? ? · · · n 1 · · · ? ?
? ? · · · ? ? · · · ? ?
...

... · · ·
...

... · · ·
...

...
? n · · · ? ? · · · 1 ?
n ? · · · ? ? · · · ? 1


where all the columns are the same after the removal of 1 and n.
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Proof. Consider the corresponding sequence of swapping pairs (1) which we
know has all possible pairs of distinct alternatives and any two neighboring
pairs are linked, i.e., satisfy (2). Let us consider the last column of P such
that 1 occupies the top. That column is thus

[1, a1, . . . , an−2, an−1]
T . (4)

In the next step (proceeding to the column next to the right), 1 will swap
with a1. Claim that in the subsequent steps, 1 goes straight to the bottom
(each step moving down one position). Indeed, suppose at some point we
had the column

[a1, . . . , ai−1, 1, ai, . . . , an−1]
T .

where 1 has just swapped with ai−1. If 1 does not swap with ai in the next
step, then it will be ai−1 swapping with ai−2. If so, then 1 will then never
swap with ai since for that to happen 1 must be involved in the previous swap
with one of a1, . . . , ai−1, but this is impossible since 1 has already swapped
with all these alternatives. Since 1 has to reach the bottom eventually, it
follows that the next step must be 1 swapping with ai, and by induction 1
has to go down continuously to the bottom.

In a similar argument, we can now show that n has to continuously go all
the way up to the top once it starts moving. Thus if 1 starts to move before
n, then P has Q1 as a submatrix, whereas if n starts to move before 1 then
P has Q2 as a submatrix.

Lemma 2. P has a submatrix Q ∈ {Q1, Q2} that occupies either the leftmost
2n− 1 columns or the rightmost 2n− 1 columns.

Proof. Suppose Q1 is a submatrix of P . (The case where Q2 is a submatrix
of P can be established in a similar argument.) If the first column of Q1

(given in (4)) is not the first column in P , then the previous column was

[1, a2, a1, . . . , an−2, an−1︸︷︷︸
=n

]T ,

i.e., the previous swap was between a1 and a2. Similarly, if the rightmost
column of Q1

[n, a1, a2, . . . , an−2, 1]T .

is not the last column in P , then the next swap must also be between a1 and
a2. However, a1 and a2 cannot swap more than once, hence either the first
column of Q1 is the first column in P or the last column of Q1 is the last
column in P .
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Now we are ready to show that P is a relay. Suppose Q1 occupies the
leftmost 2n − 1 columns of P . We want to show that P is a top-down
relay, i.e. it satisfies the recursive definition given in (3). Consider the
inductive hypothesis that for any k < n, a matrix with k rows is a top-down
relay if it satisfies the following: (a) it corresponds to a maximal chain on
L({i, i + 1, ..., i + k − 1}) for some i ∈ N, (b) the columns are in such an
order that the neighboring swapping pairs are linked as in (2), and (c) in
the leftmost 2k − 1 columns the top alternative goes all the way down then
followed the bottom alternative goes all the way up as analogous to Q1. This
hypothesis is obviously true for k = 1 or k = 2.

Since Q1 occupies the leftmost part of P , the first column of Q1 is
[1, 2, . . . , n]T . All the remaining columns to the right of Q1 will have n
on the top and 1 at the bottom, and clearly, right after Q1 the first pair to
swap is [2, 3], i.e. 2 starts to move down. Consider the submatrix P ′ of P
enframed by n’s on the top and 1’s at the bottom: it obviously corresponds
to a maximal chain on L({2, 3, ..., n − 1}) and the columns are ordered so
that the neighboring swapping pairs are linked. Moreover, since 2, the top
alternative among {2, 3, ..., n− 1}, is the first to move in P ′, by an argument
analogous to that used in Lemma 1, the leftmost 2n − 3 columns of the P ′

is analogous to Q1 (2 moves all the way down, then n − 1 moves all the
way up). Therefore, by the inductive hypothesis P ′ is a top-down relay, i.e.
P ′ = Rn−2(2, . . . , n−1) (defined in (3)). This implies that P = Rn(1, 2, ..., n).
Thus P is a top-down relay. If, on the other hand, Q1 occupies the rightmost
2n− 1 columns of P , then it is clear that after relabelling every alternative
i = 1, ..., n as n + 1 − i and listing the preferences in a reverse order, the
resulting matrix is also Rn(1, 2, ..., n), a top-down relay. If Q2 is a submatrix
of P , then P is shown to be a bottom-up relay in an analogous argument.

References

[1] K. W. Roberts, Voting over income tax schedules, Journal of Public
Economics 8 (3) (1977) 329 – 340.

[2] J. S. Gans, M. Smart, Majority voting with single-crossing preferences,
Journal of Public Economics 59 (2) (1996) 219 – 237.

[3] R. Bredereck, J. Chen, G. J. Woeginger, A characterization of the single-
crossing domain, Social Choice and Welfare 41 (4) (2013) 989–998.

10



[4] J.-M. Grandmont, Intermediate preferences and the majority rule,
Econometrica 46 (2) (1978) 317–330.

[5] P. Rothstein, Representative voter theorems, Public Choice 72 (2) (1991)
193–212.

[6] G. Demange, Majority relation and median representative ordering, SE-
RIEs 3 (1) (2012) 95–109.
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